Theorem psetsep | index | src |

theorem psetsep {b: nat} (n: nat) {x: nat} (p: wff x):
  $ E. b pset b == {x | x < n /\ p} $;
StepHypRefExpression
1 biidd
_1 = n -> (0 < a <-> 0 < a)
2 eqsidd
_1 = n -> pset (m, a) == pset (m, a)
3 eqidd
_1 = n -> x = x
4 id
_1 = n -> _1 = n
5 3, 4 lteqd
_1 = n -> (x < _1 <-> x < n)
6 biidd
_1 = n -> (p <-> p)
7 5, 6 aneqd
_1 = n -> (x < _1 /\ p <-> x < n /\ p)
8 7 abeqd
_1 = n -> {x | x < _1 /\ p} == {x | x < n /\ p}
9 2, 8 eqseqd
_1 = n -> (pset (m, a) == {x | x < _1 /\ p} <-> pset (m, a) == {x | x < n /\ p})
10 1, 9 aneqd
_1 = n -> (0 < a /\ pset (m, a) == {x | x < _1 /\ p} <-> 0 < a /\ pset (m, a) == {x | x < n /\ p})
11 10 exeqd
_1 = n -> (E. a (0 < a /\ pset (m, a) == {x | x < _1 /\ p}) <-> E. a (0 < a /\ pset (m, a) == {x | x < n /\ p}))
12 biidd
_1 = 0 -> (0 < a <-> 0 < a)
13 eqsidd
_1 = 0 -> pset (m, a) == pset (m, a)
14 eqidd
_1 = 0 -> x = x
15 id
_1 = 0 -> _1 = 0
16 14, 15 lteqd
_1 = 0 -> (x < _1 <-> x < 0)
17 biidd
_1 = 0 -> (p <-> p)
18 16, 17 aneqd
_1 = 0 -> (x < _1 /\ p <-> x < 0 /\ p)
19 18 abeqd
_1 = 0 -> {x | x < _1 /\ p} == {x | x < 0 /\ p}
20 13, 19 eqseqd
_1 = 0 -> (pset (m, a) == {x | x < _1 /\ p} <-> pset (m, a) == {x | x < 0 /\ p})
21 12, 20 aneqd
_1 = 0 -> (0 < a /\ pset (m, a) == {x | x < _1 /\ p} <-> 0 < a /\ pset (m, a) == {x | x < 0 /\ p})
22 21 exeqd
_1 = 0 -> (E. a (0 < a /\ pset (m, a) == {x | x < _1 /\ p}) <-> E. a (0 < a /\ pset (m, a) == {x | x < 0 /\ p}))
23 biidd
_1 = v -> (0 < a <-> 0 < a)
24 eqsidd
_1 = v -> pset (m, a) == pset (m, a)
25 eqidd
_1 = v -> x = x
26 id
_1 = v -> _1 = v
27 25, 26 lteqd
_1 = v -> (x < _1 <-> x < v)
28 biidd
_1 = v -> (p <-> p)
29 27, 28 aneqd
_1 = v -> (x < _1 /\ p <-> x < v /\ p)
30 29 abeqd
_1 = v -> {x | x < _1 /\ p} == {x | x < v /\ p}
31 24, 30 eqseqd
_1 = v -> (pset (m, a) == {x | x < _1 /\ p} <-> pset (m, a) == {x | x < v /\ p})
32 23, 31 aneqd
_1 = v -> (0 < a /\ pset (m, a) == {x | x < _1 /\ p} <-> 0 < a /\ pset (m, a) == {x | x < v /\ p})
33 32 exeqd
_1 = v -> (E. a (0 < a /\ pset (m, a) == {x | x < _1 /\ p}) <-> E. a (0 < a /\ pset (m, a) == {x | x < v /\ p}))
34 biidd
_1 = suc v -> (0 < a <-> 0 < a)
35 eqsidd
_1 = suc v -> pset (m, a) == pset (m, a)
36 eqidd
_1 = suc v -> x = x
37 id
_1 = suc v -> _1 = suc v
38 36, 37 lteqd
_1 = suc v -> (x < _1 <-> x < suc v)
39 biidd
_1 = suc v -> (p <-> p)
40 38, 39 aneqd
_1 = suc v -> (x < _1 /\ p <-> x < suc v /\ p)
41 40 abeqd
_1 = suc v -> {x | x < _1 /\ p} == {x | x < suc v /\ p}
42 35, 41 eqseqd
_1 = suc v -> (pset (m, a) == {x | x < _1 /\ p} <-> pset (m, a) == {x | x < suc v /\ p})
43 34, 42 aneqd
_1 = suc v -> (0 < a /\ pset (m, a) == {x | x < _1 /\ p} <-> 0 < a /\ pset (m, a) == {x | x < suc v /\ p})
44 43 exeqd
_1 = suc v -> (E. a (0 < a /\ pset (m, a) == {x | x < _1 /\ p}) <-> E. a (0 < a /\ pset (m, a) == {x | x < suc v /\ p}))
45 lteq2
a = 1 -> (0 < a <-> 0 < 1)
46 preq2
a = 1 -> m, a = m, 1
47 46 pseteqd
a = 1 -> pset (m, a) == pset (m, 1)
48 47 eqseq1d
a = 1 -> (pset (m, a) == {x | x < 0 /\ p} <-> pset (m, 1) == {x | x < 0 /\ p})
49 45, 48 aneqd
a = 1 -> (0 < a /\ pset (m, a) == {x | x < 0 /\ p} <-> 0 < 1 /\ pset (m, 1) == {x | x < 0 /\ p})
50 49 iexe
0 < 1 /\ pset (m, 1) == {x | x < 0 /\ p} -> E. a (0 < a /\ pset (m, a) == {x | x < 0 /\ p})
51 ian
0 < 1 -> pset (m, 1) == {x | x < 0 /\ p} -> 0 < 1 /\ pset (m, 1) == {x | x < 0 /\ p}
52 d0lt1
0 < 1
53 51, 52 ax_mp
pset (m, 1) == {x | x < 0 /\ p} -> 0 < 1 /\ pset (m, 1) == {x | x < 0 /\ p}
54 binth
~x e. pset (m, 1) -> ~(x < 0 /\ p) -> (x e. pset (m, 1) <-> x < 0 /\ p)
55 elpset1
~x e. pset (m, 1)
56 54, 55 ax_mp
~(x < 0 /\ p) -> (x e. pset (m, 1) <-> x < 0 /\ p)
57 anl
x < 0 /\ p -> x < 0
58 lt02
~x < 0
59 57, 58 mt
~(x < 0 /\ p)
60 56, 59 ax_mp
x e. pset (m, 1) <-> x < 0 /\ p
61 60 eqab2i
pset (m, 1) == {x | x < 0 /\ p}
62 53, 61 ax_mp
0 < 1 /\ pset (m, 1) == {x | x < 0 /\ p}
63 50, 62 ax_mp
E. a (0 < a /\ pset (m, a) == {x | x < 0 /\ p})
64 63 a1i
0 < m /\ A. x (0 < x /\ x <= n -> x || m) -> E. a (0 < a /\ pset (m, a) == {x | x < 0 /\ p})
65 lteq2
a = b -> (0 < a <-> 0 < b)
66 preq2
a = b -> m, a = m, b
67 66 pseteqd
a = b -> pset (m, a) == pset (m, b)
68 67 eqseq1d
a = b -> (pset (m, a) == {x | x < suc v /\ p} <-> pset (m, b) == {x | x < suc v /\ p})
69 65, 68 aneqd
a = b -> (0 < a /\ pset (m, a) == {x | x < suc v /\ p} <-> 0 < b /\ pset (m, b) == {x | x < suc v /\ p})
70 69 cbvex
E. a (0 < a /\ pset (m, a) == {x | x < suc v /\ p}) <-> E. b (0 < b /\ pset (m, b) == {x | x < suc v /\ p})
71 lteq2
b = a * suc (m * suc v) -> (0 < b <-> 0 < a * suc (m * suc v))
72 preq2
b = a * suc (m * suc v) -> m, b = m, a * suc (m * suc v)
73 72 pseteqd
b = a * suc (m * suc v) -> pset (m, b) == pset (m, a * suc (m * suc v))
74 73 eqseq1d
b = a * suc (m * suc v) -> (pset (m, b) == {x | x < suc v /\ p} <-> pset (m, a * suc (m * suc v)) == {x | x < suc v /\ p})
75 71, 74 aneqd
b = a * suc (m * suc v) -> (0 < b /\ pset (m, b) == {x | x < suc v /\ p} <-> 0 < a * suc (m * suc v) /\ pset (m, a * suc (m * suc v)) == {x | x < suc v /\ p})
76 75 iexe
0 < a * suc (m * suc v) /\ pset (m, a * suc (m * suc v)) == {x | x < suc v /\ p} -> E. b (0 < b /\ pset (m, b) == {x | x < suc v /\ p})
77 mulpos
0 < a * suc (m * suc v) <-> 0 < a /\ 0 < suc (m * suc v)
78 anrl
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> 0 < a
79 lt01S
0 < suc (m * suc v)
80 79 a1i
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> 0 < suc (m * suc v)
81 78, 80 iand
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> 0 < a /\ 0 < suc (m * suc v)
82 77, 81 sylibr
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> 0 < a * suc (m * suc v)
83 bitr
(y e. {x | x < suc v /\ p} <-> [y / x] (x < suc v /\ p)) ->
  ([y / x] (x < suc v /\ p) <-> y < suc v /\ [y / x] p) ->
  (y e. {x | x < suc v /\ p} <-> y < suc v /\ [y / x] p)
84 elab
y e. {x | x < suc v /\ p} <-> [y / x] (x < suc v /\ p)
85 83, 84 ax_mp
([y / x] (x < suc v /\ p) <-> y < suc v /\ [y / x] p) -> (y e. {x | x < suc v /\ p} <-> y < suc v /\ [y / x] p)
86 nfv
F/ x y < suc v
87 nfsb1
F/ x [y / x] p
88 86, 87 nfan
F/ x y < suc v /\ [y / x] p
89 lteq1
x = y -> (x < suc v <-> y < suc v)
90 sbq
x = y -> (p <-> [y / x] p)
91 89, 90 aneqd
x = y -> (x < suc v /\ p <-> y < suc v /\ [y / x] p)
92 88, 91 sbeh
[y / x] (x < suc v /\ p) <-> y < suc v /\ [y / x] p
93 85, 92 ax_mp
y e. {x | x < suc v /\ p} <-> y < suc v /\ [y / x] p
94 an3l
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> 0 < m /\ A. x (0 < x /\ x <= n -> x || m)
95 94 anld
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> 0 < m
96 lteq2
x = z -> (0 < x <-> 0 < z)
97 leeq1
x = z -> (x <= v <-> z <= v)
98 96, 97 aneqd
x = z -> (0 < x /\ x <= v <-> 0 < z /\ z <= v)
99 dvdeq1
x = z -> (x || m <-> z || m)
100 98, 99 imeqd
x = z -> (0 < x /\ x <= v -> x || m <-> 0 < z /\ z <= v -> z || m)
101 100 cbval
A. x (0 < x /\ x <= v -> x || m) <-> A. z (0 < z /\ z <= v -> z || m)
102 94 anrd
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> A. x (0 < x /\ x <= n -> x || m)
103 letr
v <= suc v -> suc v <= n -> v <= n
104 lesucid
v <= suc v
105 103, 104 ax_mp
suc v <= n -> v <= n
106 anllr
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> v < n
107 106 conv lt
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> suc v <= n
108 105, 107 syl
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> v <= n
109 letr
x <= v -> v <= n -> x <= n
110 109 com12
v <= n -> x <= v -> x <= n
111 110 anim2d
v <= n -> 0 < x /\ x <= v -> 0 < x /\ x <= n
112 111 imim1d
v <= n -> (0 < x /\ x <= n -> x || m) -> 0 < x /\ x <= v -> x || m
113 112 alimd
v <= n -> A. x (0 < x /\ x <= n -> x || m) -> A. x (0 < x /\ x <= v -> x || m)
114 108, 113 rsyl
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) ->
  A. x (0 < x /\ x <= n -> x || m) ->
  A. x (0 < x /\ x <= v -> x || m)
115 102, 114 mpd
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> A. x (0 < x /\ x <= v -> x || m)
116 101, 115 sylib
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> A. z (0 < z /\ z <= v -> z || m)
117 95, 78, 116 psetS
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) ->
  (y e. pset (m, a * suc (m * suc v)) <-> y e. pset (m, a) \/ y = v)
118 bitr
(y e. {x | x < v /\ p} <-> [y / x] (x < v /\ p)) -> ([y / x] (x < v /\ p) <-> y < v /\ [y / x] p) -> (y e. {x | x < v /\ p} <-> y < v /\ [y / x] p)
119 elab
y e. {x | x < v /\ p} <-> [y / x] (x < v /\ p)
120 118, 119 ax_mp
([y / x] (x < v /\ p) <-> y < v /\ [y / x] p) -> (y e. {x | x < v /\ p} <-> y < v /\ [y / x] p)
121 nfv
F/ x y < v
122 121, 87 nfan
F/ x y < v /\ [y / x] p
123 lteq1
x = y -> (x < v <-> y < v)
124 123, 90 aneqd
x = y -> (x < v /\ p <-> y < v /\ [y / x] p)
125 122, 124 sbeh
[y / x] (x < v /\ p) <-> y < v /\ [y / x] p
126 120, 125 ax_mp
y e. {x | x < v /\ p} <-> y < v /\ [y / x] p
127 anrr
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> pset (m, a) == {x | x < v /\ p}
128 127 eleq2d
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> (y e. pset (m, a) <-> y e. {x | x < v /\ p})
129 126, 128 syl6bb
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> (y e. pset (m, a) <-> y < v /\ [y / x] p)
130 129 oreq1d
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) ->
  (y e. pset (m, a) \/ y = v <-> y < v /\ [y / x] p \/ y = v)
131 bitr
(y < suc v /\ [y / x] p <-> (y < v \/ y = v) /\ [y / x] p) ->
  ((y < v \/ y = v) /\ [y / x] p <-> y < v /\ [y / x] p \/ y = v /\ [v / x] p) ->
  (y < suc v /\ [y / x] p <-> y < v /\ [y / x] p \/ y = v /\ [v / x] p)
132 bitr3
(y <= v <-> y < suc v) -> (y <= v <-> y < v \/ y = v) -> (y < suc v <-> y < v \/ y = v)
133 leltsuc
y <= v <-> y < suc v
134 132, 133 ax_mp
(y <= v <-> y < v \/ y = v) -> (y < suc v <-> y < v \/ y = v)
135 leloe
y <= v <-> y < v \/ y = v
136 134, 135 ax_mp
y < suc v <-> y < v \/ y = v
137 136 aneq1i
y < suc v /\ [y / x] p <-> (y < v \/ y = v) /\ [y / x] p
138 131, 137 ax_mp
((y < v \/ y = v) /\ [y / x] p <-> y < v /\ [y / x] p \/ y = v /\ [v / x] p) -> (y < suc v /\ [y / x] p <-> y < v /\ [y / x] p \/ y = v /\ [v / x] p)
139 bitr
((y < v \/ y = v) /\ [y / x] p <-> y < v /\ [y / x] p \/ y = v /\ [y / x] p) ->
  (y < v /\ [y / x] p \/ y = v /\ [y / x] p <-> y < v /\ [y / x] p \/ y = v /\ [v / x] p) ->
  ((y < v \/ y = v) /\ [y / x] p <-> y < v /\ [y / x] p \/ y = v /\ [v / x] p)
140 andir
(y < v \/ y = v) /\ [y / x] p <-> y < v /\ [y / x] p \/ y = v /\ [y / x] p
141 139, 140 ax_mp
(y < v /\ [y / x] p \/ y = v /\ [y / x] p <-> y < v /\ [y / x] p \/ y = v /\ [v / x] p) ->
  ((y < v \/ y = v) /\ [y / x] p <-> y < v /\ [y / x] p \/ y = v /\ [v / x] p)
142 aneq2a
(y = v -> ([y / x] p <-> [v / x] p)) -> (y = v /\ [y / x] p <-> y = v /\ [v / x] p)
143 sbeq1
y = v -> ([y / x] p <-> [v / x] p)
144 142, 143 ax_mp
y = v /\ [y / x] p <-> y = v /\ [v / x] p
145 144 oreq2i
y < v /\ [y / x] p \/ y = v /\ [y / x] p <-> y < v /\ [y / x] p \/ y = v /\ [v / x] p
146 141, 145 ax_mp
(y < v \/ y = v) /\ [y / x] p <-> y < v /\ [y / x] p \/ y = v /\ [v / x] p
147 138, 146 ax_mp
y < suc v /\ [y / x] p <-> y < v /\ [y / x] p \/ y = v /\ [v / x] p
148 bian2
[v / x] p -> (y = v /\ [v / x] p <-> y = v)
149 anlr
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> [v / x] p
150 148, 149 syl
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> (y = v /\ [v / x] p <-> y = v)
151 150 oreq2d
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) ->
  (y < v /\ [y / x] p \/ y = v /\ [v / x] p <-> y < v /\ [y / x] p \/ y = v)
152 147, 151 syl5bb
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) ->
  (y < suc v /\ [y / x] p <-> y < v /\ [y / x] p \/ y = v)
153 130, 152 bitr4d
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) ->
  (y e. pset (m, a) \/ y = v <-> y < suc v /\ [y / x] p)
154 117, 153 bitrd
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) ->
  (y e. pset (m, a * suc (m * suc v)) <-> y < suc v /\ [y / x] p)
155 93, 154 syl6bbr
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) ->
  (y e. pset (m, a * suc (m * suc v)) <-> y e. {x | x < suc v /\ p})
156 155 eqrd
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) ->
  pset (m, a * suc (m * suc v)) == {x | x < suc v /\ p}
157 82, 156 iand
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) ->
  0 < a * suc (m * suc v) /\ pset (m, a * suc (m * suc v)) == {x | x < suc v /\ p}
158 76, 157 syl
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) ->
  E. b (0 < b /\ pset (m, b) == {x | x < suc v /\ p})
159 158 eexda
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p ->
  E. a (0 < a /\ pset (m, a) == {x | x < v /\ p}) ->
  E. b (0 < b /\ pset (m, b) == {x | x < suc v /\ p})
160 70, 159 syl6ibr
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p ->
  E. a (0 < a /\ pset (m, a) == {x | x < v /\ p}) ->
  E. a (0 < a /\ pset (m, a) == {x | x < suc v /\ p})
161 bior2
~(y = v /\ [v / x] p) -> (y < v /\ [y / x] p \/ y = v /\ [v / x] p <-> y < v /\ [y / x] p)
162 con3
(y = v /\ [v / x] p -> [v / x] p) -> ~[v / x] p -> ~(y = v /\ [v / x] p)
163 anr
y = v /\ [v / x] p -> [v / x] p
164 162, 163 ax_mp
~[v / x] p -> ~(y = v /\ [v / x] p)
165 164 anwr
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ ~[v / x] p -> ~(y = v /\ [v / x] p)
166 161, 165 syl
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ ~[v / x] p -> (y < v /\ [y / x] p \/ y = v /\ [v / x] p <-> y < v /\ [y / x] p)
167 147, 166 syl5bb
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ ~[v / x] p -> (y < suc v /\ [y / x] p <-> y < v /\ [y / x] p)
168 126, 167 syl6bbr
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ ~[v / x] p -> (y < suc v /\ [y / x] p <-> y e. {x | x < v /\ p})
169 93, 168 syl5bb
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ ~[v / x] p -> (y e. {x | x < suc v /\ p} <-> y e. {x | x < v /\ p})
170 169 eqrd
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ ~[v / x] p -> {x | x < suc v /\ p} == {x | x < v /\ p}
171 170 eqseq2d
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ ~[v / x] p -> (pset (m, a) == {x | x < suc v /\ p} <-> pset (m, a) == {x | x < v /\ p})
172 171 aneq2d
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ ~[v / x] p -> (0 < a /\ pset (m, a) == {x | x < suc v /\ p} <-> 0 < a /\ pset (m, a) == {x | x < v /\ p})
173 172 exeqd
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ ~[v / x] p ->
  (E. a (0 < a /\ pset (m, a) == {x | x < suc v /\ p}) <-> E. a (0 < a /\ pset (m, a) == {x | x < v /\ p}))
174 173 bi2d
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ ~[v / x] p ->
  E. a (0 < a /\ pset (m, a) == {x | x < v /\ p}) ->
  E. a (0 < a /\ pset (m, a) == {x | x < suc v /\ p})
175 160, 174 casesda
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n -> E. a (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> E. a (0 < a /\ pset (m, a) == {x | x < suc v /\ p})
176 175 imp
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ E. a (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> E. a (0 < a /\ pset (m, a) == {x | x < suc v /\ p})
177 11, 22, 33, 44, 64, 176 indlt
0 < m /\ A. x (0 < x /\ x <= n -> x || m) -> E. a (0 < a /\ pset (m, a) == {x | x < n /\ p})
178 pseteq
b = m, a -> pset b == pset (m, a)
179 178 anwr
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ (0 < a /\ pset (m, a) == {x | x < n /\ p}) /\ b = m, a -> pset b == pset (m, a)
180 anrr
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ (0 < a /\ pset (m, a) == {x | x < n /\ p}) -> pset (m, a) == {x | x < n /\ p}
181 180 anwl
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ (0 < a /\ pset (m, a) == {x | x < n /\ p}) /\ b = m, a -> pset (m, a) == {x | x < n /\ p}
182 179, 181 eqstrd
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ (0 < a /\ pset (m, a) == {x | x < n /\ p}) /\ b = m, a -> pset b == {x | x < n /\ p}
183 182 iexde
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ (0 < a /\ pset (m, a) == {x | x < n /\ p}) -> E. b pset b == {x | x < n /\ p}
184 183 eexda
0 < m /\ A. x (0 < x /\ x <= n -> x || m) -> E. a (0 < a /\ pset (m, a) == {x | x < n /\ p}) -> E. b pset b == {x | x < n /\ p}
185 177, 184 mpd
0 < m /\ A. x (0 < x /\ x <= n -> x || m) -> E. b pset b == {x | x < n /\ p}
186 185 eex
E. m (0 < m /\ A. x (0 < x /\ x <= n -> x || m)) -> E. b pset b == {x | x < n /\ p}
187 lcmex
E. m (0 < m /\ A. x (0 < x /\ x <= n -> x || m))
188 186, 187 ax_mp
E. b pset b == {x | x < n /\ p}

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)