| Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | biidd | _1 = n -> (0 < a <-> 0 < a) | 
        
          | 2 |  | eqsidd | _1 = n -> pset (m, a) == pset (m, a) | 
        
          | 3 |  | eqidd | _1 = n -> x = x | 
        
          | 4 |  | id | _1 = n -> _1 = n | 
        
          | 5 | 3, 4 | lteqd | _1 = n -> (x < _1 <-> x < n) | 
        
          | 6 |  | biidd | _1 = n -> (p <-> p) | 
        
          | 7 | 5, 6 | aneqd | _1 = n -> (x < _1 /\ p <-> x < n /\ p) | 
        
          | 8 | 7 | abeqd | _1 = n -> {x | x < _1 /\ p} == {x | x < n /\ p} | 
        
          | 9 | 2, 8 | eqseqd | _1 = n -> (pset (m, a) == {x | x < _1 /\ p} <-> pset (m, a) == {x | x < n /\ p}) | 
        
          | 10 | 1, 9 | aneqd | _1 = n -> (0 < a /\ pset (m, a) == {x | x < _1 /\ p} <-> 0 < a /\ pset (m, a) == {x | x < n /\ p}) | 
        
          | 11 | 10 | exeqd | _1 = n -> (E. a (0 < a /\ pset (m, a) == {x | x < _1 /\ p}) <-> E. a (0 < a /\ pset (m, a) == {x | x < n /\ p})) | 
        
          | 12 |  | biidd | _1 = 0 -> (0 < a <-> 0 < a) | 
        
          | 13 |  | eqsidd | _1 = 0 -> pset (m, a) == pset (m, a) | 
        
          | 14 |  | eqidd | _1 = 0 -> x = x | 
        
          | 15 |  | id | _1 = 0 -> _1 = 0 | 
        
          | 16 | 14, 15 | lteqd | _1 = 0 -> (x < _1 <-> x < 0) | 
        
          | 17 |  | biidd | _1 = 0 -> (p <-> p) | 
        
          | 18 | 16, 17 | aneqd | _1 = 0 -> (x < _1 /\ p <-> x < 0 /\ p) | 
        
          | 19 | 18 | abeqd | _1 = 0 -> {x | x < _1 /\ p} == {x | x < 0 /\ p} | 
        
          | 20 | 13, 19 | eqseqd | _1 = 0 -> (pset (m, a) == {x | x < _1 /\ p} <-> pset (m, a) == {x | x < 0 /\ p}) | 
        
          | 21 | 12, 20 | aneqd | _1 = 0 -> (0 < a /\ pset (m, a) == {x | x < _1 /\ p} <-> 0 < a /\ pset (m, a) == {x | x < 0 /\ p}) | 
        
          | 22 | 21 | exeqd | _1 = 0 -> (E. a (0 < a /\ pset (m, a) == {x | x < _1 /\ p}) <-> E. a (0 < a /\ pset (m, a) == {x | x < 0 /\ p})) | 
        
          | 23 |  | biidd | _1 = v -> (0 < a <-> 0 < a) | 
        
          | 24 |  | eqsidd | _1 = v -> pset (m, a) == pset (m, a) | 
        
          | 25 |  | eqidd | _1 = v -> x = x | 
        
          | 26 |  | id | _1 = v -> _1 = v | 
        
          | 27 | 25, 26 | lteqd | _1 = v -> (x < _1 <-> x < v) | 
        
          | 28 |  | biidd | _1 = v -> (p <-> p) | 
        
          | 29 | 27, 28 | aneqd | _1 = v -> (x < _1 /\ p <-> x < v /\ p) | 
        
          | 30 | 29 | abeqd | _1 = v -> {x | x < _1 /\ p} == {x | x < v /\ p} | 
        
          | 31 | 24, 30 | eqseqd | _1 = v -> (pset (m, a) == {x | x < _1 /\ p} <-> pset (m, a) == {x | x < v /\ p}) | 
        
          | 32 | 23, 31 | aneqd | _1 = v -> (0 < a /\ pset (m, a) == {x | x < _1 /\ p} <-> 0 < a /\ pset (m, a) == {x | x < v /\ p}) | 
        
          | 33 | 32 | exeqd | _1 = v -> (E. a (0 < a /\ pset (m, a) == {x | x < _1 /\ p}) <-> E. a (0 < a /\ pset (m, a) == {x | x < v /\ p})) | 
        
          | 34 |  | biidd | _1 = suc v -> (0 < a <-> 0 < a) | 
        
          | 35 |  | eqsidd | _1 = suc v -> pset (m, a) == pset (m, a) | 
        
          | 36 |  | eqidd | _1 = suc v -> x = x | 
        
          | 37 |  | id | _1 = suc v -> _1 = suc v | 
        
          | 38 | 36, 37 | lteqd | _1 = suc v -> (x < _1 <-> x < suc v) | 
        
          | 39 |  | biidd | _1 = suc v -> (p <-> p) | 
        
          | 40 | 38, 39 | aneqd | _1 = suc v -> (x < _1 /\ p <-> x < suc v /\ p) | 
        
          | 41 | 40 | abeqd | _1 = suc v -> {x | x < _1 /\ p} == {x | x < suc v /\ p} | 
        
          | 42 | 35, 41 | eqseqd | _1 = suc v -> (pset (m, a) == {x | x < _1 /\ p} <-> pset (m, a) == {x | x < suc v /\ p}) | 
        
          | 43 | 34, 42 | aneqd | _1 = suc v -> (0 < a /\ pset (m, a) == {x | x < _1 /\ p} <-> 0 < a /\ pset (m, a) == {x | x < suc v /\ p}) | 
        
          | 44 | 43 | exeqd | _1 = suc v -> (E. a (0 < a /\ pset (m, a) == {x | x < _1 /\ p}) <-> E. a (0 < a /\ pset (m, a) == {x | x < suc v /\ p})) | 
        
          | 45 |  | lteq2 | a = 1 -> (0 < a <-> 0 < 1) | 
        
          | 46 |  | preq2 | a = 1 -> m, a = m, 1 | 
        
          | 47 | 46 | pseteqd | a = 1 -> pset (m, a) == pset (m, 1) | 
        
          | 48 | 47 | eqseq1d | a = 1 -> (pset (m, a) == {x | x < 0 /\ p} <-> pset (m, 1) == {x | x < 0 /\ p}) | 
        
          | 49 | 45, 48 | aneqd | a = 1 -> (0 < a /\ pset (m, a) == {x | x < 0 /\ p} <-> 0 < 1 /\ pset (m, 1) == {x | x < 0 /\ p}) | 
        
          | 50 | 49 | iexe | 0 < 1 /\ pset (m, 1) == {x | x < 0 /\ p} -> E. a (0 < a /\ pset (m, a) == {x | x < 0 /\ p}) | 
        
          | 51 |  | ian | 0 < 1 -> pset (m, 1) == {x | x < 0 /\ p} -> 0 < 1 /\ pset (m, 1) == {x | x < 0 /\ p} | 
        
          | 52 |  | d0lt1 | 0 < 1 | 
        
          | 53 | 51, 52 | ax_mp | pset (m, 1) == {x | x < 0 /\ p} -> 0 < 1 /\ pset (m, 1) == {x | x < 0 /\ p} | 
        
          | 54 |  | binth | ~x e. pset (m, 1) -> ~(x < 0 /\ p) -> (x e. pset (m, 1) <-> x < 0 /\ p) | 
        
          | 55 |  | elpset1 | ~x e. pset (m, 1) | 
        
          | 56 | 54, 55 | ax_mp | ~(x < 0 /\ p) -> (x e. pset (m, 1) <-> x < 0 /\ p) | 
        
          | 57 |  | anl | x < 0 /\ p -> x < 0 | 
        
          | 58 |  | lt02 | ~x < 0 | 
        
          | 59 | 57, 58 | mt | ~(x < 0 /\ p) | 
        
          | 60 | 56, 59 | ax_mp | x e. pset (m, 1) <-> x < 0 /\ p | 
        
          | 61 | 60 | eqab2i | pset (m, 1) == {x | x < 0 /\ p} | 
        
          | 62 | 53, 61 | ax_mp | 0 < 1 /\ pset (m, 1) == {x | x < 0 /\ p} | 
        
          | 63 | 50, 62 | ax_mp | E. a (0 < a /\ pset (m, a) == {x | x < 0 /\ p}) | 
        
          | 64 | 63 | a1i | 0 < m /\ A. x (0 < x /\ x <= n -> x || m) -> E. a (0 < a /\ pset (m, a) == {x | x < 0 /\ p}) | 
        
          | 65 |  | lteq2 | a = b -> (0 < a <-> 0 < b) | 
        
          | 66 |  | preq2 | a = b -> m, a = m, b | 
        
          | 67 | 66 | pseteqd | a = b -> pset (m, a) == pset (m, b) | 
        
          | 68 | 67 | eqseq1d | a = b -> (pset (m, a) == {x | x < suc v /\ p} <-> pset (m, b) == {x | x < suc v /\ p}) | 
        
          | 69 | 65, 68 | aneqd | a = b -> (0 < a /\ pset (m, a) == {x | x < suc v /\ p} <-> 0 < b /\ pset (m, b) == {x | x < suc v /\ p}) | 
        
          | 70 | 69 | cbvex | E. a (0 < a /\ pset (m, a) == {x | x < suc v /\ p}) <-> E. b (0 < b /\ pset (m, b) == {x | x < suc v /\ p}) | 
        
          | 71 |  | lteq2 | b = a * suc (m * suc v) -> (0 < b <-> 0 < a * suc (m * suc v)) | 
        
          | 72 |  | preq2 | b = a * suc (m * suc v) -> m, b = m, a * suc (m * suc v) | 
        
          | 73 | 72 | pseteqd | b = a * suc (m * suc v) -> pset (m, b) == pset (m, a * suc (m * suc v)) | 
        
          | 74 | 73 | eqseq1d | b = a * suc (m * suc v) -> (pset (m, b) == {x | x < suc v /\ p} <-> pset (m, a * suc (m * suc v)) == {x | x < suc v /\ p}) | 
        
          | 75 | 71, 74 | aneqd | b = a * suc (m * suc v) -> (0 < b /\ pset (m, b) == {x | x < suc v /\ p} <-> 0 < a * suc (m * suc v) /\ pset (m, a * suc (m * suc v)) == {x | x < suc v /\ p}) | 
        
          | 76 | 75 | iexe | 0 < a * suc (m * suc v) /\ pset (m, a * suc (m * suc v)) == {x | x < suc v /\ p} -> E. b (0 < b /\ pset (m, b) == {x | x < suc v /\ p}) | 
        
          | 77 |  | mulpos | 0 < a * suc (m * suc v) <-> 0 < a /\ 0 < suc (m * suc v) | 
        
          | 78 |  | anrl | 0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> 0 < a | 
        
          | 79 |  | lt01S | 0 < suc (m * suc v) | 
        
          | 80 | 79 | a1i | 0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> 0 < suc (m * suc v) | 
        
          | 81 | 78, 80 | iand | 0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> 0 < a /\ 0 < suc (m * suc v) | 
        
          | 82 | 77, 81 | sylibr | 0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> 0 < a * suc (m * suc v) | 
        
          | 83 |  | bitr | (y e. {x | x < suc v /\ p} <-> [y / x] (x < suc v /\ p)) ->
  ([y / x] (x < suc v /\ p) <-> y < suc v /\ [y / x] p) ->
  (y e. {x | x < suc v /\ p} <-> y < suc v /\ [y / x] p) | 
        
          | 84 |  | elab | y e. {x | x < suc v /\ p} <-> [y / x] (x < suc v /\ p) | 
        
          | 85 | 83, 84 | ax_mp | ([y / x] (x < suc v /\ p) <-> y < suc v /\ [y / x] p) -> (y e. {x | x < suc v /\ p} <-> y < suc v /\ [y / x] p) | 
        
          | 86 |  | nfv | F/ x y < suc v | 
        
          | 87 |  | nfsb1 | F/ x [y / x] p | 
        
          | 88 | 86, 87 | nfan | F/ x y < suc v /\ [y / x] p | 
        
          | 89 |  | lteq1 | x = y -> (x < suc v <-> y < suc v) | 
        
          | 90 |  | sbq | x = y -> (p <-> [y / x] p) | 
        
          | 91 | 89, 90 | aneqd | x = y -> (x < suc v /\ p <-> y < suc v /\ [y / x] p) | 
        
          | 92 | 88, 91 | sbeh | [y / x] (x < suc v /\ p) <-> y < suc v /\ [y / x] p | 
        
          | 93 | 85, 92 | ax_mp | y e. {x | x < suc v /\ p} <-> y < suc v /\ [y / x] p | 
        
          | 94 |  | an3l | 0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> 0 < m /\ A. x (0 < x /\ x <= n -> x || m) | 
        
          | 95 | 94 | anld | 0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> 0 < m | 
        
          | 96 |  | lteq2 | x = z -> (0 < x <-> 0 < z) | 
        
          | 97 |  | leeq1 | x = z -> (x <= v <-> z <= v) | 
        
          | 98 | 96, 97 | aneqd | x = z -> (0 < x /\ x <= v <-> 0 < z /\ z <= v) | 
        
          | 99 |  | dvdeq1 | x = z -> (x || m <-> z || m) | 
        
          | 100 | 98, 99 | imeqd | x = z -> (0 < x /\ x <= v -> x || m <-> 0 < z /\ z <= v -> z || m) | 
        
          | 101 | 100 | cbval | A. x (0 < x /\ x <= v -> x || m) <-> A. z (0 < z /\ z <= v -> z || m) | 
        
          | 102 | 94 | anrd | 0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> A. x (0 < x /\ x <= n -> x || m) | 
        
          | 103 |  | letr | v <= suc v -> suc v <= n -> v <= n | 
        
          | 104 |  | lesucid | v <= suc v | 
        
          | 105 | 103, 104 | ax_mp | suc v <= n -> v <= n | 
        
          | 106 |  | anllr | 0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> v < n | 
        
          | 107 | 106 | conv lt | 0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> suc v <= n | 
        
          | 108 | 105, 107 | syl | 0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> v <= n | 
        
          | 109 |  | letr | x <= v -> v <= n -> x <= n | 
        
          | 110 | 109 | com12 | v <= n -> x <= v -> x <= n | 
        
          | 111 | 110 | anim2d | v <= n -> 0 < x /\ x <= v -> 0 < x /\ x <= n | 
        
          | 112 | 111 | imim1d | v <= n -> (0 < x /\ x <= n -> x || m) -> 0 < x /\ x <= v -> x || m | 
        
          | 113 | 112 | alimd | v <= n -> A. x (0 < x /\ x <= n -> x || m) -> A. x (0 < x /\ x <= v -> x || m) | 
        
          | 114 | 108, 113 | rsyl | 0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) ->
  A. x (0 < x /\ x <= n -> x || m) ->
  A. x (0 < x /\ x <= v -> x || m) | 
        
          | 115 | 102, 114 | mpd | 0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> A. x (0 < x /\ x <= v -> x || m) | 
        
          | 116 | 101, 115 | sylib | 0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> A. z (0 < z /\ z <= v -> z || m) | 
        
          | 117 | 95, 78, 116 | psetS | 0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) ->
  (y e. pset (m, a * suc (m * suc v)) <-> y e. pset (m, a) \/ y = v) | 
        
          | 118 |  | bitr | (y e. {x | x < v /\ p} <-> [y / x] (x < v /\ p)) -> ([y / x] (x < v /\ p) <-> y < v /\ [y / x] p) -> (y e. {x | x < v /\ p} <-> y < v /\ [y / x] p) | 
        
          | 119 |  | elab | y e. {x | x < v /\ p} <-> [y / x] (x < v /\ p) | 
        
          | 120 | 118, 119 | ax_mp | ([y / x] (x < v /\ p) <-> y < v /\ [y / x] p) -> (y e. {x | x < v /\ p} <-> y < v /\ [y / x] p) | 
        
          | 121 |  | nfv | F/ x y < v | 
        
          | 122 | 121, 87 | nfan | F/ x y < v /\ [y / x] p | 
        
          | 123 |  | lteq1 | x = y -> (x < v <-> y < v) | 
        
          | 124 | 123, 90 | aneqd | x = y -> (x < v /\ p <-> y < v /\ [y / x] p) | 
        
          | 125 | 122, 124 | sbeh | [y / x] (x < v /\ p) <-> y < v /\ [y / x] p | 
        
          | 126 | 120, 125 | ax_mp | y e. {x | x < v /\ p} <-> y < v /\ [y / x] p | 
        
          | 127 |  | anrr | 0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> pset (m, a) == {x | x < v /\ p} | 
        
          | 128 | 127 | eleq2d | 0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> (y e. pset (m, a) <-> y e. {x | x < v /\ p}) | 
        
          | 129 | 126, 128 | syl6bb | 0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> (y e. pset (m, a) <-> y < v /\ [y / x] p) | 
        
          | 130 | 129 | oreq1d | 0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) ->
  (y e. pset (m, a) \/ y = v <-> y < v /\ [y / x] p \/ y = v) | 
        
          | 131 |  | bitr | (y < suc v /\ [y / x] p <-> (y < v \/ y = v) /\ [y / x] p) ->
  ((y < v \/ y = v) /\ [y / x] p <-> y < v /\ [y / x] p \/ y = v /\ [v / x] p) ->
  (y < suc v /\ [y / x] p <-> y < v /\ [y / x] p \/ y = v /\ [v / x] p) | 
        
          | 132 |  | bitr3 | (y <= v <-> y < suc v) -> (y <= v <-> y < v \/ y = v) -> (y < suc v <-> y < v \/ y = v) | 
        
          | 133 |  | leltsuc | y <= v <-> y < suc v | 
        
          | 134 | 132, 133 | ax_mp | (y <= v <-> y < v \/ y = v) -> (y < suc v <-> y < v \/ y = v) | 
        
          | 135 |  | leloe | y <= v <-> y < v \/ y = v | 
        
          | 136 | 134, 135 | ax_mp | y < suc v <-> y < v \/ y = v | 
        
          | 137 | 136 | aneq1i | y < suc v /\ [y / x] p <-> (y < v \/ y = v) /\ [y / x] p | 
        
          | 138 | 131, 137 | ax_mp | ((y < v \/ y = v) /\ [y / x] p <-> y < v /\ [y / x] p \/ y = v /\ [v / x] p) -> (y < suc v /\ [y / x] p <-> y < v /\ [y / x] p \/ y = v /\ [v / x] p) | 
        
          | 139 |  | bitr | ((y < v \/ y = v) /\ [y / x] p <-> y < v /\ [y / x] p \/ y = v /\ [y / x] p) ->
  (y < v /\ [y / x] p \/ y = v /\ [y / x] p <-> y < v /\ [y / x] p \/ y = v /\ [v / x] p) ->
  ((y < v \/ y = v) /\ [y / x] p <-> y < v /\ [y / x] p \/ y = v /\ [v / x] p) | 
        
          | 140 |  | andir | (y < v \/ y = v) /\ [y / x] p <-> y < v /\ [y / x] p \/ y = v /\ [y / x] p | 
        
          | 141 | 139, 140 | ax_mp | (y < v /\ [y / x] p \/ y = v /\ [y / x] p <-> y < v /\ [y / x] p \/ y = v /\ [v / x] p) ->
  ((y < v \/ y = v) /\ [y / x] p <-> y < v /\ [y / x] p \/ y = v /\ [v / x] p) | 
        
          | 142 |  | aneq2a | (y = v -> ([y / x] p <-> [v / x] p)) -> (y = v /\ [y / x] p <-> y = v /\ [v / x] p) | 
        
          | 143 |  | sbeq1 | y = v -> ([y / x] p <-> [v / x] p) | 
        
          | 144 | 142, 143 | ax_mp | y = v /\ [y / x] p <-> y = v /\ [v / x] p | 
        
          | 145 | 144 | oreq2i | y < v /\ [y / x] p \/ y = v /\ [y / x] p <-> y < v /\ [y / x] p \/ y = v /\ [v / x] p | 
        
          | 146 | 141, 145 | ax_mp | (y < v \/ y = v) /\ [y / x] p <-> y < v /\ [y / x] p \/ y = v /\ [v / x] p | 
        
          | 147 | 138, 146 | ax_mp | y < suc v /\ [y / x] p <-> y < v /\ [y / x] p \/ y = v /\ [v / x] p | 
        
          | 148 |  | bian2 | [v / x] p -> (y = v /\ [v / x] p <-> y = v) | 
        
          | 149 |  | anlr | 0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> [v / x] p | 
        
          | 150 | 148, 149 | syl | 0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> (y = v /\ [v / x] p <-> y = v) | 
        
          | 151 | 150 | oreq2d | 0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) ->
  (y < v /\ [y / x] p \/ y = v /\ [v / x] p <-> y < v /\ [y / x] p \/ y = v) | 
        
          | 152 | 147, 151 | syl5bb | 0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) ->
  (y < suc v /\ [y / x] p <-> y < v /\ [y / x] p \/ y = v) | 
        
          | 153 | 130, 152 | bitr4d | 0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) ->
  (y e. pset (m, a) \/ y = v <-> y < suc v /\ [y / x] p) | 
        
          | 154 | 117, 153 | bitrd | 0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) ->
  (y e. pset (m, a * suc (m * suc v)) <-> y < suc v /\ [y / x] p) | 
        
          | 155 | 93, 154 | syl6bbr | 0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) ->
  (y e. pset (m, a * suc (m * suc v)) <-> y e. {x | x < suc v /\ p}) | 
        
          | 156 | 155 | eqrd | 0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) ->
  pset (m, a * suc (m * suc v)) == {x | x < suc v /\ p} | 
        
          | 157 | 82, 156 | iand | 0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) ->
  0 < a * suc (m * suc v) /\ pset (m, a * suc (m * suc v)) == {x | x < suc v /\ p} | 
        
          | 158 | 76, 157 | syl | 0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) ->
  E. b (0 < b /\ pset (m, b) == {x | x < suc v /\ p}) | 
        
          | 159 | 158 | eexda | 0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p ->
  E. a (0 < a /\ pset (m, a) == {x | x < v /\ p}) ->
  E. b (0 < b /\ pset (m, b) == {x | x < suc v /\ p}) | 
        
          | 160 | 70, 159 | syl6ibr | 0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p ->
  E. a (0 < a /\ pset (m, a) == {x | x < v /\ p}) ->
  E. a (0 < a /\ pset (m, a) == {x | x < suc v /\ p}) | 
        
          | 161 |  | bior2 | ~(y = v /\ [v / x] p) -> (y < v /\ [y / x] p \/ y = v /\ [v / x] p <-> y < v /\ [y / x] p) | 
        
          | 162 |  | con3 | (y = v /\ [v / x] p -> [v / x] p) -> ~[v / x] p -> ~(y = v /\ [v / x] p) | 
        
          | 163 |  | anr | y = v /\ [v / x] p -> [v / x] p | 
        
          | 164 | 162, 163 | ax_mp | ~[v / x] p -> ~(y = v /\ [v / x] p) | 
        
          | 165 | 164 | anwr | 0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ ~[v / x] p -> ~(y = v /\ [v / x] p) | 
        
          | 166 | 161, 165 | syl | 0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ ~[v / x] p -> (y < v /\ [y / x] p \/ y = v /\ [v / x] p <-> y < v /\ [y / x] p) | 
        
          | 167 | 147, 166 | syl5bb | 0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ ~[v / x] p -> (y < suc v /\ [y / x] p <-> y < v /\ [y / x] p) | 
        
          | 168 | 126, 167 | syl6bbr | 0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ ~[v / x] p -> (y < suc v /\ [y / x] p <-> y e. {x | x < v /\ p}) | 
        
          | 169 | 93, 168 | syl5bb | 0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ ~[v / x] p -> (y e. {x | x < suc v /\ p} <-> y e. {x | x < v /\ p}) | 
        
          | 170 | 169 | eqrd | 0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ ~[v / x] p -> {x | x < suc v /\ p} == {x | x < v /\ p} | 
        
          | 171 | 170 | eqseq2d | 0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ ~[v / x] p -> (pset (m, a) == {x | x < suc v /\ p} <-> pset (m, a) == {x | x < v /\ p}) | 
        
          | 172 | 171 | aneq2d | 0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ ~[v / x] p -> (0 < a /\ pset (m, a) == {x | x < suc v /\ p} <-> 0 < a /\ pset (m, a) == {x | x < v /\ p}) | 
        
          | 173 | 172 | exeqd | 0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ ~[v / x] p ->
  (E. a (0 < a /\ pset (m, a) == {x | x < suc v /\ p}) <-> E. a (0 < a /\ pset (m, a) == {x | x < v /\ p})) | 
        
          | 174 | 173 | bi2d | 0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ ~[v / x] p ->
  E. a (0 < a /\ pset (m, a) == {x | x < v /\ p}) ->
  E. a (0 < a /\ pset (m, a) == {x | x < suc v /\ p}) | 
        
          | 175 | 160, 174 | casesda | 0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n -> E. a (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> E. a (0 < a /\ pset (m, a) == {x | x < suc v /\ p}) | 
        
          | 176 | 175 | imp | 0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ E. a (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> E. a (0 < a /\ pset (m, a) == {x | x < suc v /\ p}) | 
        
          | 177 | 11, 22, 33, 44, 64, 176 | indlt | 0 < m /\ A. x (0 < x /\ x <= n -> x || m) -> E. a (0 < a /\ pset (m, a) == {x | x < n /\ p}) | 
        
          | 178 |  | pseteq | b = m, a -> pset b == pset (m, a) | 
        
          | 179 | 178 | anwr | 0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ (0 < a /\ pset (m, a) == {x | x < n /\ p}) /\ b = m, a -> pset b == pset (m, a) | 
        
          | 180 |  | anrr | 0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ (0 < a /\ pset (m, a) == {x | x < n /\ p}) -> pset (m, a) == {x | x < n /\ p} | 
        
          | 181 | 180 | anwl | 0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ (0 < a /\ pset (m, a) == {x | x < n /\ p}) /\ b = m, a -> pset (m, a) == {x | x < n /\ p} | 
        
          | 182 | 179, 181 | eqstrd | 0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ (0 < a /\ pset (m, a) == {x | x < n /\ p}) /\ b = m, a -> pset b == {x | x < n /\ p} | 
        
          | 183 | 182 | iexde | 0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ (0 < a /\ pset (m, a) == {x | x < n /\ p}) -> E. b pset b == {x | x < n /\ p} | 
        
          | 184 | 183 | eexda | 0 < m /\ A. x (0 < x /\ x <= n -> x || m) -> E. a (0 < a /\ pset (m, a) == {x | x < n /\ p}) -> E. b pset b == {x | x < n /\ p} | 
        
          | 185 | 177, 184 | mpd | 0 < m /\ A. x (0 < x /\ x <= n -> x || m) -> E. b pset b == {x | x < n /\ p} | 
        
          | 186 | 185 | eex | E. m (0 < m /\ A. x (0 < x /\ x <= n -> x || m)) -> E. b pset b == {x | x < n /\ p} | 
        
          | 187 |  | lcmex | E. m (0 < m /\ A. x (0 < x /\ x <= n -> x || m)) | 
        
          | 188 | 186, 187 | ax_mp | E. b pset b == {x | x < n /\ p} |