Step | Hyp | Ref | Expression |
1 |
|
biidd |
_1 = n -> (0 < a <-> 0 < a) |
2 |
|
eqsidd |
_1 = n -> pset (m, a) == pset (m, a) |
3 |
|
eqidd |
_1 = n -> x = x |
4 |
|
id |
_1 = n -> _1 = n |
5 |
3, 4 |
lteqd |
_1 = n -> (x < _1 <-> x < n) |
6 |
|
biidd |
_1 = n -> (p <-> p) |
7 |
5, 6 |
aneqd |
_1 = n -> (x < _1 /\ p <-> x < n /\ p) |
8 |
7 |
abeqd |
_1 = n -> {x | x < _1 /\ p} == {x | x < n /\ p} |
9 |
2, 8 |
eqseqd |
_1 = n -> (pset (m, a) == {x | x < _1 /\ p} <-> pset (m, a) == {x | x < n /\ p}) |
10 |
1, 9 |
aneqd |
_1 = n -> (0 < a /\ pset (m, a) == {x | x < _1 /\ p} <-> 0 < a /\ pset (m, a) == {x | x < n /\ p}) |
11 |
10 |
exeqd |
_1 = n -> (E. a (0 < a /\ pset (m, a) == {x | x < _1 /\ p}) <-> E. a (0 < a /\ pset (m, a) == {x | x < n /\ p})) |
12 |
|
biidd |
_1 = 0 -> (0 < a <-> 0 < a) |
13 |
|
eqsidd |
_1 = 0 -> pset (m, a) == pset (m, a) |
14 |
|
eqidd |
_1 = 0 -> x = x |
15 |
|
id |
_1 = 0 -> _1 = 0 |
16 |
14, 15 |
lteqd |
_1 = 0 -> (x < _1 <-> x < 0) |
17 |
|
biidd |
_1 = 0 -> (p <-> p) |
18 |
16, 17 |
aneqd |
_1 = 0 -> (x < _1 /\ p <-> x < 0 /\ p) |
19 |
18 |
abeqd |
_1 = 0 -> {x | x < _1 /\ p} == {x | x < 0 /\ p} |
20 |
13, 19 |
eqseqd |
_1 = 0 -> (pset (m, a) == {x | x < _1 /\ p} <-> pset (m, a) == {x | x < 0 /\ p}) |
21 |
12, 20 |
aneqd |
_1 = 0 -> (0 < a /\ pset (m, a) == {x | x < _1 /\ p} <-> 0 < a /\ pset (m, a) == {x | x < 0 /\ p}) |
22 |
21 |
exeqd |
_1 = 0 -> (E. a (0 < a /\ pset (m, a) == {x | x < _1 /\ p}) <-> E. a (0 < a /\ pset (m, a) == {x | x < 0 /\ p})) |
23 |
|
biidd |
_1 = v -> (0 < a <-> 0 < a) |
24 |
|
eqsidd |
_1 = v -> pset (m, a) == pset (m, a) |
25 |
|
eqidd |
_1 = v -> x = x |
26 |
|
id |
_1 = v -> _1 = v |
27 |
25, 26 |
lteqd |
_1 = v -> (x < _1 <-> x < v) |
28 |
|
biidd |
_1 = v -> (p <-> p) |
29 |
27, 28 |
aneqd |
_1 = v -> (x < _1 /\ p <-> x < v /\ p) |
30 |
29 |
abeqd |
_1 = v -> {x | x < _1 /\ p} == {x | x < v /\ p} |
31 |
24, 30 |
eqseqd |
_1 = v -> (pset (m, a) == {x | x < _1 /\ p} <-> pset (m, a) == {x | x < v /\ p}) |
32 |
23, 31 |
aneqd |
_1 = v -> (0 < a /\ pset (m, a) == {x | x < _1 /\ p} <-> 0 < a /\ pset (m, a) == {x | x < v /\ p}) |
33 |
32 |
exeqd |
_1 = v -> (E. a (0 < a /\ pset (m, a) == {x | x < _1 /\ p}) <-> E. a (0 < a /\ pset (m, a) == {x | x < v /\ p})) |
34 |
|
biidd |
_1 = suc v -> (0 < a <-> 0 < a) |
35 |
|
eqsidd |
_1 = suc v -> pset (m, a) == pset (m, a) |
36 |
|
eqidd |
_1 = suc v -> x = x |
37 |
|
id |
_1 = suc v -> _1 = suc v |
38 |
36, 37 |
lteqd |
_1 = suc v -> (x < _1 <-> x < suc v) |
39 |
|
biidd |
_1 = suc v -> (p <-> p) |
40 |
38, 39 |
aneqd |
_1 = suc v -> (x < _1 /\ p <-> x < suc v /\ p) |
41 |
40 |
abeqd |
_1 = suc v -> {x | x < _1 /\ p} == {x | x < suc v /\ p} |
42 |
35, 41 |
eqseqd |
_1 = suc v -> (pset (m, a) == {x | x < _1 /\ p} <-> pset (m, a) == {x | x < suc v /\ p}) |
43 |
34, 42 |
aneqd |
_1 = suc v -> (0 < a /\ pset (m, a) == {x | x < _1 /\ p} <-> 0 < a /\ pset (m, a) == {x | x < suc v /\ p}) |
44 |
43 |
exeqd |
_1 = suc v -> (E. a (0 < a /\ pset (m, a) == {x | x < _1 /\ p}) <-> E. a (0 < a /\ pset (m, a) == {x | x < suc v /\ p})) |
45 |
|
lteq2 |
a = 1 -> (0 < a <-> 0 < 1) |
46 |
|
preq2 |
a = 1 -> m, a = m, 1 |
47 |
46 |
pseteqd |
a = 1 -> pset (m, a) == pset (m, 1) |
48 |
47 |
eqseq1d |
a = 1 -> (pset (m, a) == {x | x < 0 /\ p} <-> pset (m, 1) == {x | x < 0 /\ p}) |
49 |
45, 48 |
aneqd |
a = 1 -> (0 < a /\ pset (m, a) == {x | x < 0 /\ p} <-> 0 < 1 /\ pset (m, 1) == {x | x < 0 /\ p}) |
50 |
49 |
iexe |
0 < 1 /\ pset (m, 1) == {x | x < 0 /\ p} -> E. a (0 < a /\ pset (m, a) == {x | x < 0 /\ p}) |
51 |
|
ian |
0 < 1 -> pset (m, 1) == {x | x < 0 /\ p} -> 0 < 1 /\ pset (m, 1) == {x | x < 0 /\ p} |
52 |
|
d0lt1 |
0 < 1 |
53 |
51, 52 |
ax_mp |
pset (m, 1) == {x | x < 0 /\ p} -> 0 < 1 /\ pset (m, 1) == {x | x < 0 /\ p} |
54 |
|
binth |
~x e. pset (m, 1) -> ~(x < 0 /\ p) -> (x e. pset (m, 1) <-> x < 0 /\ p) |
55 |
|
elpset1 |
~x e. pset (m, 1) |
56 |
54, 55 |
ax_mp |
~(x < 0 /\ p) -> (x e. pset (m, 1) <-> x < 0 /\ p) |
57 |
|
anl |
x < 0 /\ p -> x < 0 |
58 |
|
lt02 |
~x < 0 |
59 |
57, 58 |
mt |
~(x < 0 /\ p) |
60 |
56, 59 |
ax_mp |
x e. pset (m, 1) <-> x < 0 /\ p |
61 |
60 |
eqab2i |
pset (m, 1) == {x | x < 0 /\ p} |
62 |
53, 61 |
ax_mp |
0 < 1 /\ pset (m, 1) == {x | x < 0 /\ p} |
63 |
50, 62 |
ax_mp |
E. a (0 < a /\ pset (m, a) == {x | x < 0 /\ p}) |
64 |
63 |
a1i |
0 < m /\ A. x (0 < x /\ x <= n -> x || m) -> E. a (0 < a /\ pset (m, a) == {x | x < 0 /\ p}) |
65 |
|
lteq2 |
a = b -> (0 < a <-> 0 < b) |
66 |
|
preq2 |
a = b -> m, a = m, b |
67 |
66 |
pseteqd |
a = b -> pset (m, a) == pset (m, b) |
68 |
67 |
eqseq1d |
a = b -> (pset (m, a) == {x | x < suc v /\ p} <-> pset (m, b) == {x | x < suc v /\ p}) |
69 |
65, 68 |
aneqd |
a = b -> (0 < a /\ pset (m, a) == {x | x < suc v /\ p} <-> 0 < b /\ pset (m, b) == {x | x < suc v /\ p}) |
70 |
69 |
cbvex |
E. a (0 < a /\ pset (m, a) == {x | x < suc v /\ p}) <-> E. b (0 < b /\ pset (m, b) == {x | x < suc v /\ p}) |
71 |
|
lteq2 |
b = a * suc (m * suc v) -> (0 < b <-> 0 < a * suc (m * suc v)) |
72 |
|
preq2 |
b = a * suc (m * suc v) -> m, b = m, a * suc (m * suc v) |
73 |
72 |
pseteqd |
b = a * suc (m * suc v) -> pset (m, b) == pset (m, a * suc (m * suc v)) |
74 |
73 |
eqseq1d |
b = a * suc (m * suc v) -> (pset (m, b) == {x | x < suc v /\ p} <-> pset (m, a * suc (m * suc v)) == {x | x < suc v /\ p}) |
75 |
71, 74 |
aneqd |
b = a * suc (m * suc v) -> (0 < b /\ pset (m, b) == {x | x < suc v /\ p} <-> 0 < a * suc (m * suc v) /\ pset (m, a * suc (m * suc v)) == {x | x < suc v /\ p}) |
76 |
75 |
iexe |
0 < a * suc (m * suc v) /\ pset (m, a * suc (m * suc v)) == {x | x < suc v /\ p} -> E. b (0 < b /\ pset (m, b) == {x | x < suc v /\ p}) |
77 |
|
mulpos |
0 < a * suc (m * suc v) <-> 0 < a /\ 0 < suc (m * suc v) |
78 |
|
anrl |
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> 0 < a |
79 |
|
lt01S |
0 < suc (m * suc v) |
80 |
79 |
a1i |
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> 0 < suc (m * suc v) |
81 |
78, 80 |
iand |
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> 0 < a /\ 0 < suc (m * suc v) |
82 |
77, 81 |
sylibr |
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> 0 < a * suc (m * suc v) |
83 |
|
bitr |
(y e. {x | x < suc v /\ p} <-> [y / x] (x < suc v /\ p)) ->
([y / x] (x < suc v /\ p) <-> y < suc v /\ [y / x] p) ->
(y e. {x | x < suc v /\ p} <-> y < suc v /\ [y / x] p) |
84 |
|
elab |
y e. {x | x < suc v /\ p} <-> [y / x] (x < suc v /\ p) |
85 |
83, 84 |
ax_mp |
([y / x] (x < suc v /\ p) <-> y < suc v /\ [y / x] p) -> (y e. {x | x < suc v /\ p} <-> y < suc v /\ [y / x] p) |
86 |
|
nfv |
F/ x y < suc v |
87 |
|
nfsb1 |
F/ x [y / x] p |
88 |
86, 87 |
nfan |
F/ x y < suc v /\ [y / x] p |
89 |
|
lteq1 |
x = y -> (x < suc v <-> y < suc v) |
90 |
|
sbq |
x = y -> (p <-> [y / x] p) |
91 |
89, 90 |
aneqd |
x = y -> (x < suc v /\ p <-> y < suc v /\ [y / x] p) |
92 |
88, 91 |
sbeh |
[y / x] (x < suc v /\ p) <-> y < suc v /\ [y / x] p |
93 |
85, 92 |
ax_mp |
y e. {x | x < suc v /\ p} <-> y < suc v /\ [y / x] p |
94 |
|
an3l |
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> 0 < m /\ A. x (0 < x /\ x <= n -> x || m) |
95 |
94 |
anld |
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> 0 < m |
96 |
|
lteq2 |
x = z -> (0 < x <-> 0 < z) |
97 |
|
leeq1 |
x = z -> (x <= v <-> z <= v) |
98 |
96, 97 |
aneqd |
x = z -> (0 < x /\ x <= v <-> 0 < z /\ z <= v) |
99 |
|
dvdeq1 |
x = z -> (x || m <-> z || m) |
100 |
98, 99 |
imeqd |
x = z -> (0 < x /\ x <= v -> x || m <-> 0 < z /\ z <= v -> z || m) |
101 |
100 |
cbval |
A. x (0 < x /\ x <= v -> x || m) <-> A. z (0 < z /\ z <= v -> z || m) |
102 |
94 |
anrd |
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> A. x (0 < x /\ x <= n -> x || m) |
103 |
|
letr |
v <= suc v -> suc v <= n -> v <= n |
104 |
|
lesucid |
v <= suc v |
105 |
103, 104 |
ax_mp |
suc v <= n -> v <= n |
106 |
|
anllr |
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> v < n |
107 |
106 |
conv lt |
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> suc v <= n |
108 |
105, 107 |
syl |
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> v <= n |
109 |
|
letr |
x <= v -> v <= n -> x <= n |
110 |
109 |
com12 |
v <= n -> x <= v -> x <= n |
111 |
110 |
anim2d |
v <= n -> 0 < x /\ x <= v -> 0 < x /\ x <= n |
112 |
111 |
imim1d |
v <= n -> (0 < x /\ x <= n -> x || m) -> 0 < x /\ x <= v -> x || m |
113 |
112 |
alimd |
v <= n -> A. x (0 < x /\ x <= n -> x || m) -> A. x (0 < x /\ x <= v -> x || m) |
114 |
108, 113 |
rsyl |
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) ->
A. x (0 < x /\ x <= n -> x || m) ->
A. x (0 < x /\ x <= v -> x || m) |
115 |
102, 114 |
mpd |
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> A. x (0 < x /\ x <= v -> x || m) |
116 |
101, 115 |
sylib |
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> A. z (0 < z /\ z <= v -> z || m) |
117 |
95, 78, 116 |
psetS |
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) ->
(y e. pset (m, a * suc (m * suc v)) <-> y e. pset (m, a) \/ y = v) |
118 |
|
bitr |
(y e. {x | x < v /\ p} <-> [y / x] (x < v /\ p)) -> ([y / x] (x < v /\ p) <-> y < v /\ [y / x] p) -> (y e. {x | x < v /\ p} <-> y < v /\ [y / x] p) |
119 |
|
elab |
y e. {x | x < v /\ p} <-> [y / x] (x < v /\ p) |
120 |
118, 119 |
ax_mp |
([y / x] (x < v /\ p) <-> y < v /\ [y / x] p) -> (y e. {x | x < v /\ p} <-> y < v /\ [y / x] p) |
121 |
|
nfv |
F/ x y < v |
122 |
121, 87 |
nfan |
F/ x y < v /\ [y / x] p |
123 |
|
lteq1 |
x = y -> (x < v <-> y < v) |
124 |
123, 90 |
aneqd |
x = y -> (x < v /\ p <-> y < v /\ [y / x] p) |
125 |
122, 124 |
sbeh |
[y / x] (x < v /\ p) <-> y < v /\ [y / x] p |
126 |
120, 125 |
ax_mp |
y e. {x | x < v /\ p} <-> y < v /\ [y / x] p |
127 |
|
anrr |
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> pset (m, a) == {x | x < v /\ p} |
128 |
127 |
eleq2d |
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> (y e. pset (m, a) <-> y e. {x | x < v /\ p}) |
129 |
126, 128 |
syl6bb |
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> (y e. pset (m, a) <-> y < v /\ [y / x] p) |
130 |
129 |
oreq1d |
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) ->
(y e. pset (m, a) \/ y = v <-> y < v /\ [y / x] p \/ y = v) |
131 |
|
bitr |
(y < suc v /\ [y / x] p <-> (y < v \/ y = v) /\ [y / x] p) ->
((y < v \/ y = v) /\ [y / x] p <-> y < v /\ [y / x] p \/ y = v /\ [v / x] p) ->
(y < suc v /\ [y / x] p <-> y < v /\ [y / x] p \/ y = v /\ [v / x] p) |
132 |
|
bitr3 |
(y <= v <-> y < suc v) -> (y <= v <-> y < v \/ y = v) -> (y < suc v <-> y < v \/ y = v) |
133 |
|
leltsuc |
y <= v <-> y < suc v |
134 |
132, 133 |
ax_mp |
(y <= v <-> y < v \/ y = v) -> (y < suc v <-> y < v \/ y = v) |
135 |
|
leloe |
y <= v <-> y < v \/ y = v |
136 |
134, 135 |
ax_mp |
y < suc v <-> y < v \/ y = v |
137 |
136 |
aneq1i |
y < suc v /\ [y / x] p <-> (y < v \/ y = v) /\ [y / x] p |
138 |
131, 137 |
ax_mp |
((y < v \/ y = v) /\ [y / x] p <-> y < v /\ [y / x] p \/ y = v /\ [v / x] p) -> (y < suc v /\ [y / x] p <-> y < v /\ [y / x] p \/ y = v /\ [v / x] p) |
139 |
|
bitr |
((y < v \/ y = v) /\ [y / x] p <-> y < v /\ [y / x] p \/ y = v /\ [y / x] p) ->
(y < v /\ [y / x] p \/ y = v /\ [y / x] p <-> y < v /\ [y / x] p \/ y = v /\ [v / x] p) ->
((y < v \/ y = v) /\ [y / x] p <-> y < v /\ [y / x] p \/ y = v /\ [v / x] p) |
140 |
|
andir |
(y < v \/ y = v) /\ [y / x] p <-> y < v /\ [y / x] p \/ y = v /\ [y / x] p |
141 |
139, 140 |
ax_mp |
(y < v /\ [y / x] p \/ y = v /\ [y / x] p <-> y < v /\ [y / x] p \/ y = v /\ [v / x] p) ->
((y < v \/ y = v) /\ [y / x] p <-> y < v /\ [y / x] p \/ y = v /\ [v / x] p) |
142 |
|
aneq2a |
(y = v -> ([y / x] p <-> [v / x] p)) -> (y = v /\ [y / x] p <-> y = v /\ [v / x] p) |
143 |
|
sbeq1 |
y = v -> ([y / x] p <-> [v / x] p) |
144 |
142, 143 |
ax_mp |
y = v /\ [y / x] p <-> y = v /\ [v / x] p |
145 |
144 |
oreq2i |
y < v /\ [y / x] p \/ y = v /\ [y / x] p <-> y < v /\ [y / x] p \/ y = v /\ [v / x] p |
146 |
141, 145 |
ax_mp |
(y < v \/ y = v) /\ [y / x] p <-> y < v /\ [y / x] p \/ y = v /\ [v / x] p |
147 |
138, 146 |
ax_mp |
y < suc v /\ [y / x] p <-> y < v /\ [y / x] p \/ y = v /\ [v / x] p |
148 |
|
bian2 |
[v / x] p -> (y = v /\ [v / x] p <-> y = v) |
149 |
|
anlr |
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> [v / x] p |
150 |
148, 149 |
syl |
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> (y = v /\ [v / x] p <-> y = v) |
151 |
150 |
oreq2d |
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) ->
(y < v /\ [y / x] p \/ y = v /\ [v / x] p <-> y < v /\ [y / x] p \/ y = v) |
152 |
147, 151 |
syl5bb |
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) ->
(y < suc v /\ [y / x] p <-> y < v /\ [y / x] p \/ y = v) |
153 |
130, 152 |
bitr4d |
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) ->
(y e. pset (m, a) \/ y = v <-> y < suc v /\ [y / x] p) |
154 |
117, 153 |
bitrd |
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) ->
(y e. pset (m, a * suc (m * suc v)) <-> y < suc v /\ [y / x] p) |
155 |
93, 154 |
syl6bbr |
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) ->
(y e. pset (m, a * suc (m * suc v)) <-> y e. {x | x < suc v /\ p}) |
156 |
155 |
eqrd |
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) ->
pset (m, a * suc (m * suc v)) == {x | x < suc v /\ p} |
157 |
82, 156 |
iand |
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) ->
0 < a * suc (m * suc v) /\ pset (m, a * suc (m * suc v)) == {x | x < suc v /\ p} |
158 |
76, 157 |
syl |
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p /\ (0 < a /\ pset (m, a) == {x | x < v /\ p}) ->
E. b (0 < b /\ pset (m, b) == {x | x < suc v /\ p}) |
159 |
158 |
eexda |
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p ->
E. a (0 < a /\ pset (m, a) == {x | x < v /\ p}) ->
E. b (0 < b /\ pset (m, b) == {x | x < suc v /\ p}) |
160 |
70, 159 |
syl6ibr |
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ [v / x] p ->
E. a (0 < a /\ pset (m, a) == {x | x < v /\ p}) ->
E. a (0 < a /\ pset (m, a) == {x | x < suc v /\ p}) |
161 |
|
bior2 |
~(y = v /\ [v / x] p) -> (y < v /\ [y / x] p \/ y = v /\ [v / x] p <-> y < v /\ [y / x] p) |
162 |
|
con3 |
(y = v /\ [v / x] p -> [v / x] p) -> ~[v / x] p -> ~(y = v /\ [v / x] p) |
163 |
|
anr |
y = v /\ [v / x] p -> [v / x] p |
164 |
162, 163 |
ax_mp |
~[v / x] p -> ~(y = v /\ [v / x] p) |
165 |
164 |
anwr |
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ ~[v / x] p -> ~(y = v /\ [v / x] p) |
166 |
161, 165 |
syl |
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ ~[v / x] p -> (y < v /\ [y / x] p \/ y = v /\ [v / x] p <-> y < v /\ [y / x] p) |
167 |
147, 166 |
syl5bb |
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ ~[v / x] p -> (y < suc v /\ [y / x] p <-> y < v /\ [y / x] p) |
168 |
126, 167 |
syl6bbr |
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ ~[v / x] p -> (y < suc v /\ [y / x] p <-> y e. {x | x < v /\ p}) |
169 |
93, 168 |
syl5bb |
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ ~[v / x] p -> (y e. {x | x < suc v /\ p} <-> y e. {x | x < v /\ p}) |
170 |
169 |
eqrd |
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ ~[v / x] p -> {x | x < suc v /\ p} == {x | x < v /\ p} |
171 |
170 |
eqseq2d |
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ ~[v / x] p -> (pset (m, a) == {x | x < suc v /\ p} <-> pset (m, a) == {x | x < v /\ p}) |
172 |
171 |
aneq2d |
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ ~[v / x] p -> (0 < a /\ pset (m, a) == {x | x < suc v /\ p} <-> 0 < a /\ pset (m, a) == {x | x < v /\ p}) |
173 |
172 |
exeqd |
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ ~[v / x] p ->
(E. a (0 < a /\ pset (m, a) == {x | x < suc v /\ p}) <-> E. a (0 < a /\ pset (m, a) == {x | x < v /\ p})) |
174 |
173 |
bi2d |
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ ~[v / x] p ->
E. a (0 < a /\ pset (m, a) == {x | x < v /\ p}) ->
E. a (0 < a /\ pset (m, a) == {x | x < suc v /\ p}) |
175 |
160, 174 |
casesda |
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n -> E. a (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> E. a (0 < a /\ pset (m, a) == {x | x < suc v /\ p}) |
176 |
175 |
imp |
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ v < n /\ E. a (0 < a /\ pset (m, a) == {x | x < v /\ p}) -> E. a (0 < a /\ pset (m, a) == {x | x < suc v /\ p}) |
177 |
11, 22, 33, 44, 64, 176 |
indlt |
0 < m /\ A. x (0 < x /\ x <= n -> x || m) -> E. a (0 < a /\ pset (m, a) == {x | x < n /\ p}) |
178 |
|
pseteq |
b = m, a -> pset b == pset (m, a) |
179 |
178 |
anwr |
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ (0 < a /\ pset (m, a) == {x | x < n /\ p}) /\ b = m, a -> pset b == pset (m, a) |
180 |
|
anrr |
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ (0 < a /\ pset (m, a) == {x | x < n /\ p}) -> pset (m, a) == {x | x < n /\ p} |
181 |
180 |
anwl |
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ (0 < a /\ pset (m, a) == {x | x < n /\ p}) /\ b = m, a -> pset (m, a) == {x | x < n /\ p} |
182 |
179, 181 |
eqstrd |
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ (0 < a /\ pset (m, a) == {x | x < n /\ p}) /\ b = m, a -> pset b == {x | x < n /\ p} |
183 |
182 |
iexde |
0 < m /\ A. x (0 < x /\ x <= n -> x || m) /\ (0 < a /\ pset (m, a) == {x | x < n /\ p}) -> E. b pset b == {x | x < n /\ p} |
184 |
183 |
eexda |
0 < m /\ A. x (0 < x /\ x <= n -> x || m) -> E. a (0 < a /\ pset (m, a) == {x | x < n /\ p}) -> E. b pset b == {x | x < n /\ p} |
185 |
177, 184 |
mpd |
0 < m /\ A. x (0 < x /\ x <= n -> x || m) -> E. b pset b == {x | x < n /\ p} |
186 |
185 |
eex |
E. m (0 < m /\ A. x (0 < x /\ x <= n -> x || m)) -> E. b pset b == {x | x < n /\ p} |
187 |
|
lcmex |
E. m (0 < m /\ A. x (0 < x /\ x <= n -> x || m)) |
188 |
186, 187 |
ax_mp |
E. b pset b == {x | x < n /\ p} |