Theorem bi2d | index | src |

theorem bi2d (a b c: wff): $ a -> (b <-> c) $ > $ a -> c -> b $;
StepHypRefExpression
1 bi2
(b <-> c) -> c -> b
2 hyp h
a -> (b <-> c)
3 1, 2 syl
a -> c -> b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp)