Theorem
bi2
≪
|
index
|
src
|
≫
theorem bi2 (a b: wff): $ (a <-> b) -> b -> a $;
Step
Hyp
Ref
Expression
1
anr
(a -> b) /\ (b -> a) -> b -> a
2
1
conv
iff
(a <-> b) -> b -> a
Axiom use
axs_prop_calc
(
ax_1
,
ax_2
,
ax_3
,
ax_mp
)