Theorem
syl
≪
|
index
|
src
|
≫
theorem syl (a b c: wff): $ b -> c $ > $ a -> b $ > $ a -> c $;
Step
Hyp
Ref
Expression
1
hyp h2
a -> b
2
hyp h1
b -> c
3
2
a1i
a -> b -> c
4
1
,
3
mpd
a -> c
Axiom use
axs_prop_calc
(
ax_1
,
ax_2
,
ax_mp
)