Theorem
eqsidd
≪
|
index
|
src
|
≫
theorem eqsidd (G: wff) (A: set): $ G -> A == A $;
Step
Hyp
Ref
Expression
1
eqsid
A == A
2
1
a1i
G -> A == A
Axiom use
axs_prop_calc
(
ax_1
,
ax_2
,
ax_3
,
ax_mp
)
,
axs_pred_calc
(
ax_gen
)