Theorem eqscomd | index | src |

theorem eqscomd (A B: set) (G: wff): $ G -> A == B $ > $ G -> B == A $;
StepHypRefExpression
1 eqscom
A == B -> B == A
2 hyp h
G -> A == B
3 1, 2 syl
G -> B == A

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4)