Theorem eqstrd | index | src |

theorem eqstrd (A B C: set) (G: wff):
  $ G -> A == B $ >
  $ G -> B == C $ >
  $ G -> A == C $;
StepHypRefExpression
1 eqstr
A == B -> B == C -> A == C
2 hyp h1
G -> A == B
3 hyp h2
G -> B == C
4 1, 2, 3 sylc
G -> A == C

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4)