Theorem sylc | index | src |

theorem sylc (a b c d: wff):
  $ b -> c -> d $ >
  $ a -> b $ >
  $ a -> c $ >
  $ a -> d $;
StepHypRefExpression
1 hyp h2
a -> c
2 hyp h
b -> c -> d
3 hyp h1
a -> b
4 2, 3 syl
a -> c -> d
5 1, 4 mpd
a -> d

Axiom use

axs_prop_calc (ax_1, ax_2, ax_mp)