Theorem eqstr | index | src |

theorem eqstr (A B C: set): $ A == B -> B == C -> A == C $;
StepHypRefExpression
1 bitr
(x e. A <-> x e. B) -> (x e. B <-> x e. C) -> (x e. A <-> x e. C)
2 1 al2imi
A. x (x e. A <-> x e. B) -> A. x (x e. B <-> x e. C) -> A. x (x e. A <-> x e. C)
3 2 conv eqs
A == B -> B == C -> A == C

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4)