Theorem eqstr2 | index | src |

theorem eqstr2 (A B C: set): $ A == B -> B == C -> C == A $;
StepHypRefExpression
1 eqscom
A == C -> C == A
2 eqstr
A == B -> B == C -> A == C
3 1, 2 syl6
A == B -> B == C -> C == A

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4)