Theorem eqscom | index | src |

theorem eqscom (A B: set): $ A == B -> B == A $;
StepHypRefExpression
1 bicom
(x e. A <-> x e. B) -> (x e. B <-> x e. A)
2 1 alimi
A. x (x e. A <-> x e. B) -> A. x (x e. B <-> x e. A)
3 2 conv eqs
A == B -> B == A

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4)