Theorem
eqsid
≪
|
index
|
src
|
≫
theorem eqsid (A: set): $ A == A $;
Step
Hyp
Ref
Expression
1
biid
x e. A <-> x e. A
2
1
ax_gen
A. x (x e. A <-> x e. A)
3
2
conv
eqs
A == A
Axiom use
axs_prop_calc
(
ax_1
,
ax_2
,
ax_3
,
ax_mp
)
,
axs_pred_calc
(
ax_gen
)