Theorem al2imi | index | src |

theorem al2imi {x: nat} (a b c: wff x):
  $ a -> b -> c $ >
  $ A. x a -> A. x b -> A. x c $;
StepHypRefExpression
1 alim
A. x (b -> c) -> A. x b -> A. x c
2 hyp h
a -> b -> c
3 2 alimi
A. x a -> A. x (b -> c)
4 1, 3 syl
A. x a -> A. x b -> A. x c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_mp), axs_pred_calc (ax_gen, ax_4)