theorem raleqi {x: nat} (p a b: wff x):
$ a <-> b $ >
$ A. x (p -> a) <-> A. x (p -> b) $;
Step | Hyp | Ref | Expression |
1 |
|
hyp h |
a <-> b |
2 |
1 |
imeq2i |
p -> a <-> p -> b |
3 |
2 |
aleqi |
A. x (p -> a) <-> A. x (p -> b) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp),
axs_pred_calc
(ax_gen,
ax_4)