Theorem raleqi | index | src |

theorem raleqi {x: nat} (p a b: wff x):
  $ a <-> b $ >
  $ A. x (p -> a) <-> A. x (p -> b) $;
StepHypRefExpression
1 hyp h
a <-> b
2 1 imeq2i
p -> a <-> p -> b
3 2 aleqi
A. x (p -> a) <-> A. x (p -> b)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4)