Theorem alimd | index | src |

theorem alimd {x: nat} (G: wff) (a b: wff x):
  $ G -> a -> b $ >
  $ G -> A. x a -> A. x b $;
StepHypRefExpression
1 ax_4
A. x (a -> b) -> A. x a -> A. x b
2 hyp h
G -> a -> b
3 2 alimi
A. x G -> A. x (a -> b)
4 ax_5
G -> A. x G
5 3, 4 syl
G -> A. x (a -> b)
6 1, 5 syl
G -> A. x a -> A. x b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5)