theorem aleqd (G: wff) {x: nat} (a b: wff x): $ G -> (a <-> b) $ > $ G -> (A. x a <-> A. x b) $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aleq | A. x (a <-> b) -> (A. x a <-> A. x b) |
|
2 | hyp h | G -> (a <-> b) |
|
3 | 2 | iald | G -> A. x (a <-> b) |
4 | 1, 3 | syl | G -> (A. x a <-> A. x b) |