Theorem aleqd | index | src |

theorem aleqd (G: wff) {x: nat} (a b: wff x):
  $ G -> (a <-> b) $ >
  $ G -> (A. x a <-> A. x b) $;
StepHypRefExpression
1 aleq
A. x (a <-> b) -> (A. x a <-> A. x b)
2 hyp h
G -> (a <-> b)
3 2 iald
G -> A. x (a <-> b)
4 1, 3 syl
G -> (A. x a <-> A. x b)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5)