theorem aleq {x: nat} (a b: wff x): $ A. x (a <-> b) -> (A. x a <-> A. x b) $;
| Step | Hyp | Ref | Expression |
| 1 |
|
ax_4 |
A. x (a -> b) -> A. x a -> A. x b |
| 2 |
|
bi1 |
(a <-> b) -> a -> b |
| 3 |
2 |
alimi |
A. x (a <-> b) -> A. x (a -> b) |
| 4 |
1, 3 |
syl |
A. x (a <-> b) -> A. x a -> A. x b |
| 5 |
|
ax_4 |
A. x (b -> a) -> A. x b -> A. x a |
| 6 |
|
bi2 |
(a <-> b) -> b -> a |
| 7 |
6 |
alimi |
A. x (a <-> b) -> A. x (b -> a) |
| 8 |
5, 7 |
syl |
A. x (a <-> b) -> A. x b -> A. x a |
| 9 |
4, 8 |
ibid |
A. x (a <-> b) -> (A. x a <-> A. x b) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp),
axs_pred_calc
(ax_gen,
ax_4)