Theorem eqtr4g | index | src |

theorem eqtr4g (G: wff) (a b c d: nat):
  $ c = a $ >
  $ d = b $ >
  $ G -> a = b $ >
  $ G -> c = d $;
StepHypRefExpression
1 hyp h1
c = a
2 hyp h2
d = b
3 hyp h
G -> a = b
4 2, 3 syl6eqr
G -> a = d
5 1, 4 syl5eq
G -> c = d

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7)