theorem eqtr4g (G: wff) (a b c d: nat): $ c = a $ > $ d = b $ > $ G -> a = b $ > $ G -> c = d $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hyp h1 | c = a |
|
2 | hyp h2 | d = b |
|
3 | hyp h | G -> a = b |
|
4 | 2, 3 | syl6eqr | G -> a = d |
5 | 1, 4 | syl5eq | G -> c = d |