theorem syl6eqr (G: wff) (a b c: nat):
$ c = b $ >
$ G -> a = b $ >
$ G -> a = c $;
Step | Hyp | Ref | Expression |
1 |
|
hyp h2 |
G -> a = b |
2 |
|
hyp h1 |
c = b |
3 |
2 |
a1i |
G -> c = b |
4 |
1, 3 |
eqtr4d |
G -> a = c |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7)