Theorem syl6eq | index | src |

theorem syl6eq (G: wff) (a b c: nat):
  $ b = c $ >
  $ G -> a = b $ >
  $ G -> a = c $;
StepHypRefExpression
1 hyp h2
G -> a = b
2 hyp h1
b = c
3 2 a1i
G -> b = c
4 1, 3 eqtrd
G -> a = c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7)