Theorem syl5eqr | index | src |

theorem syl5eqr (G: wff) (a b c: nat):
  $ b = a $ >
  $ G -> b = c $ >
  $ G -> a = c $;
StepHypRefExpression
1 hyp h1
b = a
2 1 a1i
G -> b = a
3 hyp h2
G -> b = c
4 2, 3 eqtr3d
G -> a = c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_mp), axs_pred_calc (ax_7)