theorem eqtr3d (G: wff) (a b c: nat):
$ G -> b = a $ >
$ G -> b = c $ >
$ G -> a = c $;
| Step | Hyp | Ref | Expression |
| 1 |
|
eqtr3 |
b = a -> b = c -> a = c |
| 2 |
|
hyp h1 |
G -> b = a |
| 3 |
|
hyp h2 |
G -> b = c |
| 4 |
1, 2, 3 |
sylc |
G -> a = c |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_mp),
axs_pred_calc
(ax_7)