Theorem
eqidd
≪
|
index
|
src
|
≫
theorem eqidd (G: wff) (a: nat): $ G -> a = a $;
Step
Hyp
Ref
Expression
1
eqid
a = a
2
1
a1i
G -> a = a
Axiom use
axs_prop_calc
(
ax_1
,
ax_2
,
ax_3
,
ax_mp
)
,
axs_pred_calc
(
ax_gen
,
ax_4
,
ax_5
,
ax_6
,
ax_7
)