Theorem eqidd | index | src |

theorem eqidd (G: wff) (a: nat): $ G -> a = a $;
StepHypRefExpression
1 eqid
a = a
2 1 a1i
G -> a = a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7)