Theorem
eqcomi
≪
|
index
|
src
|
≫
theorem eqcomi (a b: nat): $ a = b $ > $ b = a $;
Step
Hyp
Ref
Expression
1
eqcom
a = b -> b = a
2
hyp h
a = b
3
1
,
2
ax_mp
b = a
Axiom use
axs_prop_calc
(
ax_1
,
ax_2
,
ax_3
,
ax_mp
)
,
axs_pred_calc
(
ax_gen
,
ax_4
,
ax_5
,
ax_6
,
ax_7
)