Theorem eqcomd | index | src |

theorem eqcomd (G: wff) (a b: nat): $ G -> a = b $ > $ G -> b = a $;
StepHypRefExpression
1 eqcom
a = b -> b = a
2 hyp h
G -> a = b
3 1, 2 syl
G -> b = a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7)