Theorem eqtr2d | index | src |

theorem eqtr2d (G: wff) (a b c: nat):
  $ G -> a = b $ >
  $ G -> b = c $ >
  $ G -> c = a $;
StepHypRefExpression
1 eqtr2
a = b -> b = c -> c = a
2 hyp h1
G -> a = b
3 hyp h2
G -> b = c
4 1, 2, 3 sylc
G -> c = a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7)