Theorem ibid | index | src |

theorem ibid (a b c: wff):
  $ a -> b -> c $ >
  $ a -> c -> b $ >
  $ a -> (b <-> c) $;
StepHypRefExpression
1 hyp h1
a -> b -> c
2 hyp h2
a -> c -> b
3 1, 2 iand
a -> (b -> c) /\ (c -> b)
4 3 conv iff
a -> (b <-> c)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp)