theorem ibid (a b c: wff):
$ a -> b -> c $ >
$ a -> c -> b $ >
$ a -> (b <-> c) $;
Step | Hyp | Ref | Expression |
1 |
|
hyp h1 |
a -> b -> c |
2 |
|
hyp h2 |
a -> c -> b |
3 |
1, 2 |
iand |
a -> (b -> c) /\ (c -> b) |
4 |
3 |
conv iff |
a -> (b <-> c) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp)