Theorem ibii | index | src |

theorem ibii (a b: wff): $ a -> b $ > $ b -> a $ > $ a <-> b $;
StepHypRefExpression
1 hyp h1
a -> b
2 hyp h2
b -> a
3 1, 2 iani
(a -> b) /\ (b -> a)
4 3 conv iff
a <-> b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp)