theorem ialda {x: nat} (G: wff) (a b: wff x):
$ G /\ a -> b $ >
$ G -> A. x (a -> b) $;
Step | Hyp | Ref | Expression |
1 |
|
hyp h |
G /\ a -> b |
2 |
1 |
exp |
G -> a -> b |
3 |
2 |
iald |
G -> A. x (a -> b) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp),
axs_pred_calc
(ax_gen,
ax_4,
ax_5)