Theorem eexda | index | src |

theorem eexda {x: nat} (a: wff) (b: wff x) (c: wff):
  $ a /\ b -> c $ >
  $ a -> E. x b -> c $;
StepHypRefExpression
1 hyp h
a /\ b -> c
2 1 exp
a -> b -> c
3 2 eexd
a -> E. x b -> c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_12)