theorem eexb {x: nat} (a: wff x) (b: wff): $ E. x a -> b <-> A. x (a -> b) $;
| Step | Hyp | Ref | Expression |
| 1 |
|
nfex1 |
F/ x E. x a |
| 2 |
|
nfv |
F/ x b |
| 3 |
1, 2 |
nfim |
F/ x E. x a -> b |
| 4 |
|
iex |
a -> E. x a |
| 5 |
4 |
imim1i |
(E. x a -> b) -> a -> b |
| 6 |
3, 5 |
ialdh |
(E. x a -> b) -> A. x (a -> b) |
| 7 |
|
nfal1 |
F/ x A. x (a -> b) |
| 8 |
|
eal |
A. x (a -> b) -> a -> b |
| 9 |
7, 2, 8 |
eexdh |
A. x (a -> b) -> E. x a -> b |
| 10 |
6, 9 |
ibii |
E. x a -> b <-> A. x (a -> b) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_12)