Theorem ialdh | index | src |

theorem ialdh {x: nat} (a b: wff x): $ F/ x a $ > $ a -> b $ > $ a -> A. x b $;
StepHypRefExpression
1 hyp h2
a -> b
2 1 alimi
A. x a -> A. x b
3 hyp h1
F/ x a
4 3 nfi
a -> A. x a
5 2, 4 syl
a -> A. x b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_12)