theorem ialdh {x: nat} (a b: wff x): $ F/ x a $ > $ a -> b $ > $ a -> A. x b $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hyp h2 | a -> b |
|
| 2 | 1 | alimi | A. x a -> A. x b |
| 3 | hyp h1 | F/ x a |
|
| 4 | 3 | nfi | a -> A. x a |
| 5 | 2, 4 | syl | a -> A. x b |