Theorem eexh | index | src |

theorem eexh {x: nat} (a b: wff x): $ F/ x b $ > $ a -> b $ > $ E. x a -> b $;
StepHypRefExpression
1 con1
(~b -> A. x ~a) -> ~A. x ~a -> b
2 1 conv ex
(~b -> A. x ~a) -> E. x a -> b
3 hyp h1
F/ x b
4 3 nfnot
F/ x ~b
5 con3
(a -> b) -> ~b -> ~a
6 hyp h2
a -> b
7 5, 6 ax_mp
~b -> ~a
8 4, 7 ialdh
~b -> A. x ~a
9 2, 8 ax_mp
E. x a -> b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_12)