theorem eexh {x: nat} (a b: wff x): $ F/ x b $ > $ a -> b $ > $ E. x a -> b $;
    | Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | con1 | (~b -> A. x ~a) -> ~A. x ~a -> b  | 
        |
| 2 | 1 | conv ex | (~b -> A. x ~a) -> E. x a -> b  | 
        
| 3 | hyp h1 | F/ x b  | 
        |
| 4 | 3 | nfnot | F/ x ~b  | 
        
| 5 | con3 | (a -> b) -> ~b -> ~a  | 
        |
| 6 | hyp h2 | a -> b  | 
        |
| 7 | 5, 6 | ax_mp | ~b -> ~a  | 
        
| 8 | 4, 7 | ialdh | ~b -> A. x ~a  | 
        
| 9 | 2, 8 | ax_mp | E. x a -> b  |