Theorem eexdh | index | src |

theorem eexdh {x: nat} (a b c: wff x):
  $ F/ x a $ >
  $ F/ x c $ >
  $ a -> b -> c $ >
  $ a -> E. x b -> c $;
StepHypRefExpression
1 hyp h1
F/ x a
2 hyp h2
F/ x c
3 2 nfnot
F/ x ~c
4 1, 3 nfan
F/ x a /\ ~c
5 hyp h3
a -> b -> c
6 5 con3d
a -> ~c -> ~b
7 6 imp
a /\ ~c -> ~b
8 4, 7 ialdh
a /\ ~c -> A. x ~b
9 8 exp
a -> ~c -> A. x ~b
10 9 con1d
a -> ~A. x ~b -> c
11 10 conv ex
a -> E. x b -> c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_12)