theorem eexdh {x: nat} (a b c: wff x): $ F/ x a $ > $ F/ x c $ > $ a -> b -> c $ > $ a -> E. x b -> c $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hyp h1 | F/ x a |
|
2 | hyp h2 | F/ x c |
|
3 | 2 | nfnot | F/ x ~c |
4 | 1, 3 | nfan | F/ x a /\ ~c |
5 | hyp h3 | a -> b -> c |
|
6 | 5 | con3d | a -> ~c -> ~b |
7 | 6 | imp | a /\ ~c -> ~b |
8 | 4, 7 | ialdh | a /\ ~c -> A. x ~b |
9 | 8 | exp | a -> ~c -> A. x ~b |
10 | 9 | con1d | a -> ~A. x ~b -> c |
11 | 10 | conv ex | a -> E. x b -> c |