Theorem alimdh | index | src |

theorem alimdh {x: nat} (a b c: wff x):
  $ F/ x a $ >
  $ a -> b -> c $ >
  $ a -> A. x b -> A. x c $;
StepHypRefExpression
1 alim
A. x (b -> c) -> A. x b -> A. x c
2 hyp h1
F/ x a
3 hyp h2
a -> b -> c
4 2, 3 ialdh
a -> A. x (b -> c)
5 1, 4 syl
a -> A. x b -> A. x c

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_12)