theorem alimdh {x: nat} (a b c: wff x):
$ F/ x a $ >
$ a -> b -> c $ >
$ a -> A. x b -> A. x c $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alim | A. x (b -> c) -> A. x b -> A. x c |
|
| 2 | hyp h1 | F/ x a |
|
| 3 | hyp h2 | a -> b -> c |
|
| 4 | 2, 3 | ialdh | a -> A. x (b -> c) |
| 5 | 1, 4 | syl | a -> A. x b -> A. x c |