theorem alimdh {x: nat} (a b c: wff x): $ F/ x a $ > $ a -> b -> c $ > $ a -> A. x b -> A. x c $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alim | A. x (b -> c) -> A. x b -> A. x c |
|
2 | hyp h1 | F/ x a |
|
3 | hyp h2 | a -> b -> c |
|
4 | 2, 3 | ialdh | a -> A. x (b -> c) |
5 | 1, 4 | syl | a -> A. x b -> A. x c |