theorem aleqdh {x: nat} (G a b: wff x):
$ F/ x G $ >
$ G -> (a <-> b) $ >
$ G -> (A. x a <-> A. x b) $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aleq | A. x (a <-> b) -> (A. x a <-> A. x b) |
|
| 2 | hyp h1 | F/ x G |
|
| 3 | hyp h | G -> (a <-> b) |
|
| 4 | 2, 3 | ialdh | G -> A. x (a <-> b) |
| 5 | 1, 4 | syl | G -> (A. x a <-> A. x b) |