Theorem aleqdh | index | src |

theorem aleqdh {x: nat} (G a b: wff x):
  $ F/ x G $ >
  $ G -> (a <-> b) $ >
  $ G -> (A. x a <-> A. x b) $;
StepHypRefExpression
1 aleq
A. x (a <-> b) -> (A. x a <-> A. x b)
2 hyp h1
F/ x G
3 hyp h
G -> (a <-> b)
4 2, 3 ialdh
G -> A. x (a <-> b)
5 1, 4 syl
G -> (A. x a <-> A. x b)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_12)