Theorem nfan | index | src |

theorem nfan {x: nat} (a b: wff x): $ F/ x a $ > $ F/ x b $ > $ F/ x a /\ b $;
StepHypRefExpression
1 hyp h1
F/ x a
2 hyp h2
F/ x b
3 2 nfnot
F/ x ~b
4 1, 3 nfim
F/ x a -> ~b
5 4 nfnot
F/ x ~(a -> ~b)
6 5 conv an
F/ x a /\ b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_12)