theorem nfnot {x: nat} (a: wff x): $ F/ x a $ > $ F/ x ~a $;
| Step | Hyp | Ref | Expression |
| 1 |
|
con1 |
(~A. x ~a -> a) -> ~a -> A. x ~a |
| 2 |
|
eal |
A. x a -> a |
| 3 |
|
con1 |
(~A. x a -> A. x ~A. x a) -> ~A. x ~A. x a -> A. x a |
| 4 |
|
ax_10 |
~A. x a -> A. x ~A. x a |
| 5 |
3, 4 |
ax_mp |
~A. x ~A. x a -> A. x a |
| 6 |
|
hyp h |
F/ x a |
| 7 |
6 |
nfi |
a -> A. x a |
| 8 |
7 |
eximi |
E. x a -> E. x A. x a |
| 9 |
8 |
conv ex |
~A. x ~a -> ~A. x ~A. x a |
| 10 |
5, 9 |
syl |
~A. x ~a -> A. x a |
| 11 |
2, 10 |
syl |
~A. x ~a -> a |
| 12 |
1, 11 |
ax_mp |
~a -> A. x ~a |
| 13 |
12 |
nfri |
F/ x ~a |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_12)