Theorem eximi | index | src |

theorem eximi {x: nat} (a b: wff x): $ a -> b $ > $ E. x a -> E. x b $;
StepHypRefExpression
1 exim
A. x (a -> b) -> E. x a -> E. x b
2 hyp h
a -> b
3 2 ax_gen
A. x (a -> b)
4 1, 3 ax_mp
E. x a -> E. x b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4)