theorem eal {x: nat} (a: wff x): $ A. x a -> a $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax_3 | (~a -> ~A. x a) -> A. x a -> a |
|
| 2 | exnal | E. x ~a <-> ~A. x a |
|
| 3 | iex | ~a -> E. x ~a |
|
| 4 | 2, 3 | sylib | ~a -> ~A. x a |
| 5 | 1, 4 | ax_mp | A. x a -> a |