Theorem exnal | index | src |

theorem exnal {x: nat} (a: wff x): $ E. x ~a <-> ~A. x a $;
StepHypRefExpression
1 con2b
(A. x a <-> ~E. x ~a) -> (E. x ~a <-> ~A. x a)
2 alex
A. x a <-> ~E. x ~a
3 1, 2 ax_mp
E. x ~a <-> ~A. x a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4)