Theorem alex | index | src |

theorem alex {x: nat} (a: wff x): $ A. x a <-> ~E. x ~a $;
StepHypRefExpression
1 bitr
(A. x a <-> A. x ~~a) -> (A. x ~~a <-> ~E. x ~a) -> (A. x a <-> ~E. x ~a)
2 notnot
a <-> ~~a
3 2 aleqi
A. x a <-> A. x ~~a
4 1, 3 ax_mp
(A. x ~~a <-> ~E. x ~a) -> (A. x a <-> ~E. x ~a)
5 alnex
A. x ~~a <-> ~E. x ~a
6 4, 5 ax_mp
A. x a <-> ~E. x ~a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4)