theorem alex {x: nat} (a: wff x): $ A. x a <-> ~E. x ~a $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr | (A. x a <-> A. x ~~a) -> (A. x ~~a <-> ~E. x ~a) -> (A. x a <-> ~E. x ~a) |
|
| 2 | notnot | a <-> ~~a |
|
| 3 | 2 | aleqi | A. x a <-> A. x ~~a |
| 4 | 1, 3 | ax_mp | (A. x ~~a <-> ~E. x ~a) -> (A. x a <-> ~E. x ~a) |
| 5 | alnex | A. x ~~a <-> ~E. x ~a |
|
| 6 | 4, 5 | ax_mp | A. x a <-> ~E. x ~a |