Theorem alnex | index | src |

theorem alnex {x: nat} (a: wff x): $ A. x ~a <-> ~E. x a $;
StepHypRefExpression
1 notnot
A. x ~a <-> ~~A. x ~a
2 1 conv ex
A. x ~a <-> ~E. x a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp)