theorem iex {x: nat} (a: wff x): $ a -> E. x a $;
    | Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqcom | y = x -> x = y  | 
        |
| 2 | ax_6 | E. x x = y  | 
        |
| 3 | exim | A. x (x = y -> a) -> E. x x = y -> E. x a  | 
        |
| 4 | 2, 3 | mpi | A. x (x = y -> a) -> E. x a  | 
        
| 5 | ax_12 | x = y -> a -> A. x (x = y -> a)  | 
        |
| 6 | 4, 5 | syl6 | x = y -> a -> E. x a  | 
        
| 7 | 1, 6 | rsyl | y = x -> a -> E. x a  | 
        
| 8 | 7 | eex | E. y y = x -> a -> E. x a  | 
        
| 9 | ax_6 | E. y y = x  | 
        |
| 10 | 8, 9 | ax_mp | a -> E. x a  |