theorem rexeqda (G: wff) {x: nat} (p a b: wff x): $ G /\ p -> (a <-> b) $ > $ G -> (E. x (p /\ a) <-> E. x (p /\ b)) $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hyp h | G /\ p -> (a <-> b) |
|
2 | 1 | aneq2da | G -> (p /\ a <-> p /\ b) |
3 | 2 | exeqd | G -> (E. x (p /\ a) <-> E. x (p /\ b)) |