theorem exeqd (G: wff) {x: nat} (a b: wff x):
$ G -> (a <-> b) $ >
$ G -> (E. x a <-> E. x b) $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exeq | A. x (a <-> b) -> (E. x a <-> E. x b) |
|
| 2 | hyp h | G -> (a <-> b) |
|
| 3 | 2 | iald | G -> A. x (a <-> b) |
| 4 | 1, 3 | syl | G -> (E. x a <-> E. x b) |