Theorem exeqd | index | src |

theorem exeqd (G: wff) {x: nat} (a b: wff x):
  $ G -> (a <-> b) $ >
  $ G -> (E. x a <-> E. x b) $;
StepHypRefExpression
1 exeq
A. x (a <-> b) -> (E. x a <-> E. x b)
2 hyp h
G -> (a <-> b)
3 2 iald
G -> A. x (a <-> b)
4 1, 3 syl
G -> (E. x a <-> E. x b)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5)