Theorem exeqi | index | src |

theorem exeqi {x: nat} (a b: wff x): $ a <-> b $ > $ E. x a <-> E. x b $;
StepHypRefExpression
1 exeq
A. x (a <-> b) -> (E. x a <-> E. x b)
2 hyp h
a <-> b
3 2 ax_gen
A. x (a <-> b)
4 1, 3 ax_mp
E. x a <-> E. x b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4)