Theorem rexeqi | index | src |

theorem rexeqi {x: nat} (p a b: wff x):
  $ a <-> b $ >
  $ E. x (p /\ a) <-> E. x (p /\ b) $;
StepHypRefExpression
1 hyp h
a <-> b
2 1 aneq2i
p /\ a <-> p /\ b
3 2 exeqi
E. x (p /\ a) <-> E. x (p /\ b)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4)