theorem rexeqa {x: nat} (p a b: wff x):
$ p -> (a <-> b) $ >
$ E. x (p /\ a) <-> E. x (p /\ b) $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aneq2a | (p -> (a <-> b)) -> (p /\ a <-> p /\ b) |
|
| 2 | hyp h | p -> (a <-> b) |
|
| 3 | 1, 2 | ax_mp | p /\ a <-> p /\ b |
| 4 | 3 | exeqi | E. x (p /\ a) <-> E. x (p /\ b) |