theorem rexeqd (G: wff) {x: nat} (p a b: wff x):
$ G -> (a <-> b) $ >
$ G -> (E. x (p /\ a) <-> E. x (p /\ b)) $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hyp h | G -> (a <-> b) |
|
| 2 | 1 | aneq2d | G -> (p /\ a <-> p /\ b) |
| 3 | 2 | exeqd | G -> (E. x (p /\ a) <-> E. x (p /\ b)) |